IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v79y2018icp225-242.html
   My bibliography  Save this article

Optimal dividends under Erlang(2) inter-dividend decision times

Author

Listed:
  • Avanzi, Benjamin
  • Tu, Vincent
  • Wong, Bernard

Abstract

In the classical dividends problem, dividend decisions are allowed to be made at any time. Under such a framework, the optimal dividend strategies are often of barrier or threshold type, which can lead to very irregular dividend payments over time. In practice however companies distribute dividends on a periodic basis. In that spirit, “Erlangisation” techniques have been used to approximate problems with fixed inter-dividend decision times.

Suggested Citation

  • Avanzi, Benjamin & Tu, Vincent & Wong, Bernard, 2018. "Optimal dividends under Erlang(2) inter-dividend decision times," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 225-242.
  • Handle: RePEc:eee:insuma:v:79:y:2018:i:c:p:225-242
    DOI: 10.1016/j.insmatheco.2018.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668717303177
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2018.01.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avanzi, Benjamin & Cheung, Eric C.K. & Wong, Bernard & Woo, Jae-Kyung, 2013. "On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 98-113.
    2. Benjamin Avanzi & Vincent Tu & Bernard Wong, 2016. "A Note on Realistic Dividends in Actuarial Surplus Models," Risks, MDPI, vol. 4(4), pages 1-9, October.
    3. Benjamin Avanzi, 2009. "Strategies for Dividend Distribution: A Review," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(2), pages 217-251.
    4. Avanzi, Benjamin & Tu, Vincent & Wong, Bernard, 2014. "On optimal periodic dividend strategies in the dual model with diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 210-224.
    5. Asmussen, Soren & Avram, Florin & Usabel, Miguel, 2002. "Erlangian Approximations for Finite-Horizon Ruin Probabilities," ASTIN Bulletin, Cambridge University Press, vol. 32(2), pages 267-281, November.
    6. Albrecher, Hansjörg & Cheung, Eric C.K. & Thonhauser, Stefan, 2011. "Randomized Observation Periods for the Compound Poisson Risk Model: Dividends," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 645-672, November.
    7. Pérez, José-Luis & Yamazaki, Kazutoshi, 2017. "On the optimality of periodic barrier strategies for a spectrally positive Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 1-13.
    8. Choi, Michael C.H. & Cheung, Eric C.K., 2014. "On the expected discounted dividends in the Cramér–Lundberg risk model with more frequent ruin monitoring than dividend decisions," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 121-132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Avanzi & Hayden Lau & Bernard Wong, 2020. "On the optimality of joint periodic and extraordinary dividend strategies," Papers 2006.00717, arXiv.org, revised Dec 2020.
    2. Avanzi, Benjamin & Lau, Hayden & Wong, Bernard, 2021. "On the optimality of joint periodic and extraordinary dividend strategies," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1189-1210.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avanzi, Benjamin & Lau, Hayden & Wong, Bernard, 2021. "On the optimality of joint periodic and extraordinary dividend strategies," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1189-1210.
    2. Benjamin Avanzi & Hayden Lau & Bernard Wong, 2020. "On the optimality of joint periodic and extraordinary dividend strategies," Papers 2006.00717, arXiv.org, revised Dec 2020.
    3. Choi, Michael C.H. & Cheung, Eric C.K., 2014. "On the expected discounted dividends in the Cramér–Lundberg risk model with more frequent ruin monitoring than dividend decisions," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 121-132.
    4. Cheung, Eric C.K. & Wong, Jeff T.Y., 2017. "On the dual risk model with Parisian implementation delays in dividend payments," European Journal of Operational Research, Elsevier, vol. 257(1), pages 159-173.
    5. Benjamin Avanzi & Hayden Lau & Bernard Wong, 2020. "Optimal periodic dividend strategies for spectrally negative L\'evy processes with fixed transaction costs," Papers 2004.01838, arXiv.org, revised Dec 2020.
    6. Chen, Shumin & Wang, Xi & Deng, Yinglu & Zeng, Yan, 2016. "Optimal dividend-financing strategies in a dual risk model with time-inconsistent preferences," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 27-37.
    7. Avanzi, Benjamin & Lau, Hayden & Wong, Bernard, 2020. "Optimal periodic dividend strategies for spectrally positive Lévy risk processes with fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 315-332.
    8. Avanzi, Benjamin & Tu, Vincent & Wong, Bernard, 2014. "On optimal periodic dividend strategies in the dual model with diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 210-224.
    9. José-Luis Pérez & Kazutoshi Yamazaki, 2018. "Mixed Periodic-Classical Barrier Strategies for Lévy Risk Processes," Risks, MDPI, vol. 6(2), pages 1-39, April.
    10. Zhang, Zhimin & Han, Xiao, 2017. "The compound Poisson risk model under a mixed dividend strategy," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 1-12.
    11. Liu, Zhang & Chen, Ping & Hu, Yijun, 2020. "On the dual risk model with diffusion under a mixed dividend strategy," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    12. Avanzi, Benjamin & Cheung, Eric C.K. & Wong, Bernard & Woo, Jae-Kyung, 2013. "On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 98-113.
    13. Dong, Hua & Zhou, Xiaowen, 2019. "On a spectrally negative Lévy risk process with periodic dividends and capital injections," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
    14. Xixi Yang & Jiyang Tan & Hanjun Zhang & Ziqiang Li, 2017. "An Optimal Control Problem in a Risk Model with Stochastic Premiums and Periodic Dividend Payments," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(03), pages 1-18, June.
    15. Zhao, Yongxia & Chen, Ping & Yang, Hailiang, 2017. "Optimal periodic dividend and capital injection problem for spectrally positive Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 135-146.
    16. Noba, Kei & Pérez, José-Luis & Yamazaki, Kazutoshi & Yano, Kouji, 2018. "On optimal periodic dividend strategies for Lévy risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 29-44.
    17. Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2020. "Optimal ratcheting of dividends in a Brownian risk model," Papers 2012.10632, arXiv.org.
    18. Benjamin Avanzi & Debbie Kusch Falden & Mogens Steffensen, 2022. "Stable Dividends under Linear-Quadratic Optimization," Papers 2210.03494, arXiv.org.
    19. Teng, Ye & Zhang, Zhimin, 2023. "Finite-time expected present value of operating costs until ruin in a Cox risk model with periodic observation," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    20. Zbigniew Palmowski & José Luis Pérez & Kazutoshi Yamazaki, 2021. "Double continuation regions for American options under Poisson exercise opportunities," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 722-771, April.

    More about this item

    Keywords

    Brownian motion; Stochastic control; Dividends; Periodic strategies; Barrier strategies; Erlangisation;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G24 - Financial Economics - - Financial Institutions and Services - - - Investment Banking; Venture Capital; Brokerage
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G35 - Financial Economics - - Corporate Finance and Governance - - - Payout Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:79:y:2018:i:c:p:225-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.