IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v12y2019i2p59-d221155.html
   My bibliography  Save this article

Efficient Numerical Pricing of American Call Options Using Symmetry Arguments

Author

Listed:
  • Lars Stentoft

    (Department of Economics, University of Western Ontario, London, ON N6A 5C2, Canada
    Department of Statistical and Actuarial Sciences, University of Western Ontario, London, ON N6A 5B7, Canada)

Abstract

This paper demonstrates that it is possible to improve significantly on the estimated call prices obtained with the regression and simulation-based least-squares Monte Carlo method by using put-call symmetry. The results show that, for a large sample of options with characteristics of relevance in real-life applications, the symmetric method performs much better on average than the regular pricing method, is the best method for most of the options, never performs poorly and, as a result, is extremely efficient compared to the optimal, but unfeasible method that picks the method with the smallest Root Mean Squared Error (RMSE). A simple classification method is proposed that, by optimally selecting among estimates from the symmetric method with a reasonably small order used in the polynomial approximation, achieves a relative efficiency of more than 98 % . The relative importance of using the symmetric method increases with option maturity and with asset volatility. Using the symmetric method to price, for example, real options, many of which are call options with long maturities on volatile assets, for example energy, could therefore improve the estimates significantly by decreasing their bias and RMSE by orders of magnitude.

Suggested Citation

  • Lars Stentoft, 2019. "Efficient Numerical Pricing of American Call Options Using Symmetry Arguments," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 12(2), pages 1-26, April.
  • Handle: RePEc:gam:jjrfmx:v:12:y:2019:i:2:p:59-:d:221155
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/12/2/59/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/12/2/59/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. Orlin J. Grabbe, "undated". "The Pricing of Call and Put Options on Foreign Exchange," Rodney L. White Center for Financial Research Working Papers 06-83, Wharton School Rodney L. White Center for Financial Research.
    5. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    6. Orlin Grabbe, J., 1983. "The pricing of call and put options on foreign exchange," Journal of International Money and Finance, Elsevier, vol. 2(3), pages 239-253, December.
    7. Schroder, Mark, 1999. "Changes of Numeraire for Pricing Futures, Forwards, and Options," Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 1143-1163.
    8. Boyle, Phelim P. & Tse, Y. K., 1990. "An Algorithm for Computing Values of Options on the Maximum or Minimum of Several Assets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(2), pages 215-227, June.
    9. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    10. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    11. Orlin J. Grabbe, "undated". "The Pricing of Call and Put Options on Foreign Exchange," Rodney L. White Center for Financial Research Working Papers 6-83, Wharton School Rodney L. White Center for Financial Research.
    12. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lars Stentoft, 2020. "Computational Finance," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 13(7), pages 1-4, July.
    2. Alghalith, Moawia, 2020. "Pricing the American options: A closed-form, simple formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    4. Rojas-Bernal, Alejandro & Villamizar-Villegas, Mauricio, 2021. "Pricing the exotic: Path-dependent American options with stochastic barriers," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 2(1).
    5. Manfred Fruhwirth & Paul Schneider & Markus S. Schwaiger, 2007. "Timing Decisions in a Multinational Context: Implementing the Amin/Bodurtha Framework," Multinational Finance Journal, Multinational Finance Journal, vol. 11(3-4), pages 157-178, September.
    6. O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
    7. Chen, Ding & Härkönen, Hannu J. & Newton, David P., 2014. "Advancing the universality of quadrature methods to any underlying process for option pricing," Journal of Financial Economics, Elsevier, vol. 114(3), pages 600-612.
    8. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    9. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.
    10. Francesco Rotondi, 2019. "American Options on High Dividend Securities: A Numerical Investigation," Risks, MDPI, Open Access Journal, vol. 7(2), pages 1-20, May.
    11. Michael A. Kouritzin, 2016. "Explicit Heston Solutions and Stochastic Approximation for Path-dependent Option Pricing," Papers 1608.02028, arXiv.org, revised Apr 2018.
    12. Shuxin Guo & Qiang Liu, 2019. "The Black-Scholes-Merton dual equation," Papers 1912.10380, arXiv.org.
    13. Gomes, Frederico Pechir & Takami, Marcelo Yoshio & Brandi, Vinicius Ratton, 2008. "Investigating Unusual Changes in Real-Dollar Exchange Rate," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 62(2), October.
    14. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12, July-Dece.
    15. Muthuraman, Kumar, 2008. "A moving boundary approach to American option pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3520-3537, November.
    16. Michael A. Kouritzin, 2018. "Explicit Heston Solutions And Stochastic Approximation For Path-Dependent Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-45, February.
    17. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, July.
    18. Chung-Li Tseng & Daniel Wei-Chung Miao & San-Lin Chung & Pai-Ta Shih, 2021. "How Much Do Negative Probabilities Matter in Option Pricing?: A Case of a Lattice-Based Approach for Stochastic Volatility Models," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 14(6), pages 1-32, May.
    19. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, December.
    20. Bertrand Tavin & Lorenz Schneider, 2018. "From the Samuelson volatility effect to a Samuelson correlation effect : An analysis of crude oil calendar spread options," Post-Print hal-02311970, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:12:y:2019:i:2:p:59-:d:221155. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: XML Conversion Team (email available below). General contact details of provider: https://www.mdpi.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.