IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i4p1922-d745095.html
   My bibliography  Save this article

Spatial-Temporal Evolution of Health Impact and Economic Loss upon Exposure to PM 2.5 in China

Author

Listed:
  • Xialing Sun

    (School of Management, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Rui Zhang

    (School of Management, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Geyi Wang

    (School of Management, China University of Mining and Technology (Beijing), Beijing 100083, China)

Abstract

Exposure to PM 2.5 can seriously endanger public health. Policies for controlling PM 2.5 need to consider health hazards under different circumstances. Unlike most studies on the concentration, distribution, and influencing factors of PM 2.5 , the present study focuses on the impact of PM 2.5 on human health. We analysed the spatial-temporal evolution of health impact and economic loss caused by PM 2.5 exposure using the log-linear exposure-response function and benefit transfer method. The results indicate that the number of people affected by PM 2.5 pollution fluctuated and began to decline after reaching a peak in 2014, benefiting from the Air Pollution Prevention and Control Action Plan. Regarding the total economic loss, the temporal pattern continued to rise until 2014 and then declined, with an annual mean of 86,886.94 million USD, accounting for 1.71% of China’s GDP. For the spatial pattern, the health impact and economic loss show a strong spatial correlation and remarkable polarisation phenomena, with high values in East China, North China, Central China, and South China, but low values in Southwest China, Northwest China, and Northeast China. The spatial-temporal characterisation of PM 2.5 health hazards is visualised and analysed accordingly, which can provide a reference for more comprehensive and effective policy decisions.

Suggested Citation

  • Xialing Sun & Rui Zhang & Geyi Wang, 2022. "Spatial-Temporal Evolution of Health Impact and Economic Loss upon Exposure to PM 2.5 in China," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:4:p:1922-:d:745095
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/4/1922/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/4/1922/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Junfeng & Xu, Xiaoya & Wang, Shimeng & He, Shutong & He, Pan, 2021. "Heterogeneous effects of COVID-19 lockdown measures on air quality in Northern China," Applied Energy, Elsevier, vol. 282(PA).
    2. James Hammitt & Ying Zhou, 2006. "The Economic Value of Air-Pollution-Related Health Risks in China: A Contingent Valuation Study," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(3), pages 399-423, March.
    3. Yang, Siyuan & Fang, Delin & Chen, Bin, 2019. "Human health impact and economic effect for PM2.5 exposure in typical cities," Applied Energy, Elsevier, vol. 249(C), pages 316-325.
    4. Huagui Guo & Weifeng Li & Jiansheng Wu, 2020. "Ambient PM2.5 and Annual Lung Cancer Incidence: A Nationwide Study in 295 Chinese Counties," IJERPH, MDPI, vol. 17(5), pages 1-18, February.
    5. Huanbi Yue & Chunyang He & Qingxu Huang & Dan Yin & Brett A. Bryan, 2020. "Stronger policy required to substantially reduce deaths from PM2.5 pollution in China," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Quah, Euston & Boon, Tay Liam, 2003. "The economic cost of particulate air pollution on health in Singapore," Journal of Asian Economics, Elsevier, vol. 14(1), pages 73-90, February.
    7. Yang Ou & J. Jason West & Steven J. Smith & Christopher G. Nolte & Daniel H. Loughlin, 2020. "Air pollution control strategies directly limiting national health damages in the US," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    8. Pan He & Jing Liang & Yueming (Lucy) Qiu & Qingran Li & Bo Xing, 2020. "Increase in domestic electricity consumption from particulate air pollution," Nature Energy, Nature, vol. 5(12), pages 985-995, December.
    9. Chaopeng Hong & Qiang Zhang & Yang Zhang & Steven J. Davis & Xin Zhang & Dan Tong & Dabo Guan & Zhu Liu & Kebin He, 2020. "Weakening aerosol direct radiative effects mitigate climate penalty on Chinese air quality," Nature Climate Change, Nature, vol. 10(9), pages 845-850, September.
    10. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming Zhang & Wensheng Wang & Xialing Sun, 2023. "Measurement and Multiple Decomposition of Total Factor Productivity Growth in China’s Coal Industry," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    2. Bair O. Gomboev & Irina K. Dambueva & Sergey S. Khankhareev & Valentin S. Batomunkuev & Natalya R. Zangeeva & Vitaly E. Tsydypov & Bayanzhargal B. Sharaldaev & Aldar G. Badmaev & Daba Ts.-D. Zhamyanov, 2022. "Atmospheric Air Pollution by Stationary Sources in Ulan-Ude (Buryatia, Russia) and Its Impact on Public Health," IJERPH, MDPI, vol. 19(24), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rong Tang & Jing Zhao & Yifan Liu & Xin Huang & Yanxu Zhang & Derong Zhou & Aijun Ding & Chris P. Nielsen & Haikun Wang, 2022. "Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Ziebarth, N. R. & Schmitt, M. & Karlsson, M., 2013. "The short-term population health effects of weather and pollution: implications of climate change," Health, Econometrics and Data Group (HEDG) Working Papers 13/34, HEDG, c/o Department of Economics, University of York.
    3. Sumei Chen & Ling‐Yun He, 2019. "Taxation and the Environment–Health–Poverty Trap: A Policy Experiment Perspective," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 27(1), pages 72-92, January.
    4. Yu Ma & Deping Li & Liang Zhou, 2021. "Health Impact Attributable to Improvement of PM 2.5 Pollution from 2014–2018 and Its Potential Benefits by 2030 in China," Sustainability, MDPI, vol. 13(17), pages 1-18, August.
    5. Qin Liao & Wangqiang Jin & Yan Tao & Jiansheng Qu & Yong Li & Yibo Niu, 2020. "Health and Economic Loss Assessment of PM 2.5 Pollution during 2015–2017 in Gansu Province, China," IJERPH, MDPI, vol. 17(9), pages 1-18, May.
    6. Kubatko Oleksandr & Kubatko Oleksandra, 2015. "The Influence of Environmental Factors on Human Health: Economic Estimations for Ukraine," EERC Working Paper Series 15/01e, EERC Research Network, Russia and CIS.
    7. Yang, Siyuan & Fang, Delin & Chen, Bin, 2019. "Human health impact and economic effect for PM2.5 exposure in typical cities," Applied Energy, Elsevier, vol. 249(C), pages 316-325.
    8. Tingru Yang & Wenling Liu, 2019. "Health Effects of Energy Intensive Sectors and the Potential Health Co-Benefits of a Low Carbon Industrial Transition in China," IJERPH, MDPI, vol. 16(17), pages 1-18, August.
    9. Chen, Su-Mei & He, Ling-Yun, 2014. "Welfare loss of China's air pollution: How to make personal vehicle transportation policy," China Economic Review, Elsevier, vol. 31(C), pages 106-118.
    10. Sicheng Wang & Pingjun Sun & Feng Sun & Shengnan Jiang & Zhaomin Zhang & Guoen Wei, 2021. "The Direct and Spillover Effect of Multi-Dimensional Urbanization on PM 2.5 Concentrations: A Case Study from the Chengdu-Chongqing Urban Agglomeration in China," IJERPH, MDPI, vol. 18(20), pages 1-19, October.
    11. Keisuke Nansai & Susumu Tohno & Satoru Chatani & Keiichiro Kanemoto & Shigemi Kagawa & Yasushi Kondo & Wataru Takayanagi & Manfred Lenzen, 2021. "Consumption in the G20 nations causes particulate air pollution resulting in two million premature deaths annually," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    12. Khuc, Quy Van & Nong, Duy & Phu Vu, Tri, 2022. "To pay or not to pay that is the question - for air pollution mitigation in a world’s dynamic city: An experiment in Hanoi, Vietnam," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 687-701.
    13. Zhang, Hui & Zhang, Bing, 2020. "The unintended impact of carbon trading of China's power sector," Energy Policy, Elsevier, vol. 147(C).
    14. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    15. Zhiqiao Xiong & Dandan Li & Hongwei Yu, 2023. "Does PM2.5 (Pollutant) Reduce Firms’ Innovation Output?," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    16. Yan Wang & Yuan Gong & Caiquan Bai & Hong Yan & Xing Yi, 2023. "Exploring the convergence patterns of PM2.5 in Chinese cities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 708-733, January.
    17. Lei Gao & Taowu Pei & Jingran Zhang & Yu Tian, 2022. "The “Pollution Halo” Effect of FDI: Evidence from the Chinese Sichuan–Chongqing Urban Agglomeration," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    18. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    19. Chia-Ching Chen & Tetsuji Yamada & I-Ming Chiu & Yi-Kuen Liu, 2009. "Evaluation of the Waste Tire Resources Recovery Program and Environmental Health Policy in Taiwan," IJERPH, MDPI, vol. 6(3), pages 1-20, March.
    20. Héctor Jorquera & Ana María Villalobos, 2020. "Combining Cluster Analysis of Air Pollution and Meteorological Data with Receptor Model Results for Ambient PM 2.5 and PM 10," IJERPH, MDPI, vol. 17(22), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:4:p:1922-:d:745095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.