IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i22p15232-d976578.html
   My bibliography  Save this article

The Influence of Short-Term Heavy Rainfall on Hydraulic Characteristics and Rill Formation in the Yuanmou Dry-Hot Valley

Author

Listed:
  • Jun Luo

    (School of Geographical Sciences, China West Normal University, Nanchong 637009, China
    Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    Sichuan Provincial Engineering Laboratory of Monitoring and Control for Soil Erosion of Dry Valleys, China West Normal University, Nanchong 637009, China)

  • Xueyang Ma

    (College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China)

  • Lei Wang

    (School of Geographical Sciences, China West Normal University, Nanchong 637009, China
    Sichuan Provincial Engineering Laboratory of Monitoring and Control for Soil Erosion of Dry Valleys, China West Normal University, Nanchong 637009, China)

  • Bin Zhang

    (School of Geographical Sciences, China West Normal University, Nanchong 637009, China
    Sichuan Provincial Engineering Laboratory of Monitoring and Control for Soil Erosion of Dry Valleys, China West Normal University, Nanchong 637009, China)

  • Xiao Yang

    (School of Geographical Sciences, China West Normal University, Nanchong 637009, China)

  • Tianxiang Yue

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

Rill erosion is one of the major environmental problems in the world; it is an important factor with regard to land degradation and has a serious impact on production and daily life in the region. The widely distributed Yuanmou group stratum promotes the development of rill erosion, whereby the strong time-concentrated rainfall and the alternating arid-humid climate prepare the ground for the development of rills in soils. Therefore, a study of the processes of slope rill erosion was carried out, and a gravel-soil slope in the Yuanmou dry-hot valley was chosen to simulate short-term heavy rainfall (25 mm/h) (No. 1 plot) and moderate rainfall (15 mm/h) (No. 2 plot), to study the erosion processes of soil and the dynamic characteristics of runoff involved in erosion. The study results showed that the width of runoff was significantly different between the two plots, while the depth of runoff was not significantly different. During the rill formation process, the width of the two plots first decreased and then increased with increasing washout duration, while its depth did not change significantly. Flow was the key factor in determining the hydraulic characteristics of runoff, and it had a significant or extremely significant positive correlation with hydraulic characteristics parameters, except in the case of Fr (Froude number) ( r = 0.039). The total sediment content (CS) of plot No. 1 (0.158 g/cm 3 ) was significantly different from that of plot No. 2 (0.153 g/cm 3 ), and both CSs in the two plots decreased with increasing washout duration. The CS had an extremely significant negative correlation with τ (runoff shear force) ( r = −0.863 **) and DW-f (Darcy-Weisbach drag coefficient) ( r = −0.863 **) and a significant negative correlation with Re (Reynolds number) ( r = −0.735 *) in the short-term heavy rainfall experiment, while the CS had a significant positive correlation with V (velocity) ( r = 0.814 *), R (hydraulic radius) ( r = 0.811 *) and P (unit stream power) ( r = 0.811 *) in the moderate rainfall experiment. The results of this study will help guide further examination of the processes involved in the dynamic mechanisms of rill erosion on slopes under short-term heavy rainfall conditions.

Suggested Citation

  • Jun Luo & Xueyang Ma & Lei Wang & Bin Zhang & Xiao Yang & Tianxiang Yue, 2022. "The Influence of Short-Term Heavy Rainfall on Hydraulic Characteristics and Rill Formation in the Yuanmou Dry-Hot Valley," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:15232-:d:976578
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/22/15232/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/22/15232/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. L. Zhang & Z. Gao & Z. Li & H. Tian, 2016. "Downslope runoff and erosion response of typical engineered landform to variable inflow rate patterns from upslope," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 775-796, January.
    2. Leilei Wen & Fenli Zheng & Haiou Shen & Feng Bian & Yiliang Jiang, 2015. "Rainfall intensity and inflow rate effects on hillslope soil erosion in the Mollisol region of Northeast China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 381-395, October.
    3. L. T. Zhang & Z. L. Gao & Z. B. Li & H. W. Tian, 2016. "Downslope runoff and erosion response of typical engineered landform to variable inflow rate patterns from upslope," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 775-796, January.
    4. Hafzullah Aksoy & Abdullah Gedikli & N. Erdem Unal & Murat Yilmaz & Ebru Eris & Jaeyoung Yoon & Gokmen Tayfur, 2016. "Rainfall-Runoff Model Considering Microtopography Simulated in a Laboratory Erosion Flume," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5609-5624, December.
    5. Sun, Liquan & Zhang, Biao & Yin, Ziming & Guo, Huili & Siddique, Kadambot H.M. & Wu, Shufang & Yang, Jiangtao, 2022. "Assessing the performance of conservation measures for controlling slope runoff and erosion using field scouring experiments," Agricultural Water Management, Elsevier, vol. 259(C).
    6. Liguang Jiang & Zhijun Yao & Zhaofei Liu & Shanshan Wu & Rui Wang & Lei Wang, 2015. "Estimation of soil erosion in some sections of Lower Jinsha River based on RUSLE," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1831-1847, April.
    7. R. Singh & R. Panda & K. Satapathy & S. Ngachan, 2012. "Runoff and Sediment Yield Modelling for a Treated Hilly Watershed in Eastern Himalaya Using the Water Erosion Prediction Project Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 643-665, February.
    8. Wang, Huan & Zhang, Chao & Yao, Xiaochuang & Yun, Wenju & Ma, Jiani & Gao, Lulu & Li, Pengshan, 2022. "Scenario simulation of the tradeoff between ecological land and farmland in black soil region of Northeast China," Land Use Policy, Elsevier, vol. 114(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin Jiang & Zhengtao Shi & Qiaoling Liang & Guangxiong He & Lei Zhao & Li He, 2023. "Coupling RESI with Multi-Scenario LULC Simulation and Spatiotemporal Variability Analysis: An Ecological Spatial Constraint Approach," Sustainability, MDPI, vol. 15(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingling Wang & Wenyi Yao & Peiqing Xiao & Xinxin Hou, 2022. "The Spatiotemporal Characteristics of Flow–Sediment Relationships in a Hilly Watershed of the Chinese Loess Plateau," IJERPH, MDPI, vol. 19(15), pages 1-12, July.
    2. E. Molina-Navarro & S. Martínez-Pérez & A. Sastre-Merlín & R. Bienes-Allas, 2014. "Catchment Erosion and Sediment Delivery in a Limno-Reservoir Basin Using a Simple Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2129-2143, June.
    3. Nan Shen & Zhanli Wang & Fengbao Zhang & Chunhong Zhou, 2023. "Response of Soil Detachment Rate to Sediment Load and Model Examination: A Key Process Simulation of Rill Erosion on Steep Loessial Hillslopes," IJERPH, MDPI, vol. 20(4), pages 1-12, February.
    4. Nektarios N. Kourgialas & Georgios C. Koubouris & George P. Karatzas & Ioannis Metzidakis, 2016. "Assessing water erosion in Mediterranean tree crops using GIS techniques and field measurements: the effect of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 65-81, October.
    5. Yingqiang Song & Zeao Zhang & Yan Li & Runyan Zou & Lu Wang & Hao Yang & Yueming Hu, 2023. "The Role of High Nature Value Farmland for Landscape and Soil Pollution Assessment in a Coastal Delta in China Based on High-Resolution Indicators," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    6. Jian Sha & Zeli Li & Dennis Swaney & Bongghi Hong & Wei Wang & Yuqiu Wang, 2014. "Application of a Bayesian Watershed Model Linking Multivariate Statistical Analysis to Support Watershed-Scale Nitrogen Management in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3681-3695, September.
    7. Ying Xu & Haiping Tang & Bojie Wang & Jiao Chen, 2017. "Effects of landscape patterns on soil erosion processes in a mountain–basin system in the North China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1567-1585, July.
    8. Elias Rodrigues Cunha & Vitor Matheus Bacani & Elói Panachuki, 2017. "Modeling soil erosion using RUSLE and GIS in a watershed occupied by rural settlement in the Brazilian Cerrado," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 851-868, January.
    9. Morteza Akbari & Ehsan Neamatollahi & Hadi Memarian & Mohammad Alizadeh Noughani, 2023. "Assessing impacts of floods disaster on soil erosion risk based on the RUSLE-GloSEM approach in western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1689-1710, June.
    10. Shengwang Bao & Fan Yang, 2022. "Spatio-Temporal Dynamic of the Land Use/Cover Change and Scenario Simulation in the Southeast Coastal Shelterbelt System Construction Project Region of China," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    11. Jun Pei & Wei Yang & Yangpeng Cai & Yujun Yi & Xiaoxiao Li, 2018. "Relationship between Vegetation and Environment in an Arid-Hot Valley in Southwestern China," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    12. Yanqi Zhao & Yue Zhang & Ying Yang & Fan Li & Rongkun Dai & Jianlin Li & Mingshi Wang & Zhenhua Li, 2023. "The Impact of Land Use Structure Change on Utilization Performance in Henan Province, China," IJERPH, MDPI, vol. 20(5), pages 1-18, February.
    13. V. Chowdary & D. Chakraborthy & A. Jeyaram & Y. Murthy & J. Sharma & V. Dadhwal, 2013. "Multi-Criteria Decision Making Approach for Watershed Prioritization Using Analytic Hierarchy Process Technique and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3555-3571, August.
    14. Xue Wang, 2022. "Changes in Cultivated Land Loss and Landscape Fragmentation in China from 2000 to 2020," Land, MDPI, vol. 11(5), pages 1-16, May.
    15. Gokmen Tayfur & Bihrat Onoz & Antonino Cancelliere & Luis Garrote, 2016. "Editorial: Water Resources Management in a Changing World: Challenges and Opportunities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5553-5557, December.
    16. Jian Sha & Zeli Li & Dennis P. Swaney & Bongghi Hong & Wei Wang & Yuqiu Wang, 2014. "Application of a Bayesian Watershed Model Linking Multivariate Statistical Analysis to Support Watershed-Scale Nitrogen Management in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3681-3695, September.
    17. Wen Li & Jianwei Geng & Jingling Bao & Wenxiong Lin & Zeyan Wu & Shuisheng Fan, 2023. "Spatial and Temporal Evolution Patterns of Habitat Quality under Tea Plantation Expansion and Multi-Scenario Simulation Study: Anxi County as an Example," Land, MDPI, vol. 12(7), pages 1-19, June.
    18. Yongsheng Yao & Peiyi Xu & Jue Li & Hengwu Hu & Qun Qi, 2024. "Advancements and Applications of Life Cycle Assessment in Slope Treatment: A Comprehensive Review," Sustainability, MDPI, vol. 16(1), pages 1-28, January.
    19. Mengqi Wang & Guoping Lei, 2023. "Relative and Cumulative Effects of Climate and Land Use Change on Hydrological Ecosystem Services in Northeast China," Land, MDPI, vol. 12(7), pages 1-17, June.
    20. Arun Mondal & Deepak Khare & Sananda Kundu, 2016. "Impact assessment of climate change on future soil erosion and SOC loss," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1515-1539, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:15232-:d:976578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.