IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v87y2017i3d10.1007_s11069-017-2833-3.html
   My bibliography  Save this article

Effects of landscape patterns on soil erosion processes in a mountain–basin system in the North China

Author

Listed:
  • Ying Xu

    (Beijing Normal University
    Shandong Academy for Environmental Planning)

  • Haiping Tang

    (Beijing Normal University)

  • Bojie Wang

    (Beijing Normal University)

  • Jiao Chen

    (Beijing Normal University)

Abstract

This study was taken up to investigate the effects of landscape patterns on the soil erosion processes in a mountain–basin watershed. The revised universal soil loss equation and sediment delivery distribution models were used to estimate the soil erosion processes. The landscape patterns include the landscape metrics at the landscape level, landscape composition and configuration indicators on the basis of source–sink landscape theory. In the study area, the grassland, bare land, farmland and construction land were the sediment-source landscape; the forest and shrub were the sediment-sink landscape. The correlation analysis results showed that the soil erosion processes were significantly associated with the landscape patterns of the study area. At the landscape level, fragmentation metric was positively correlated with soil erosion; diversity metric was negatively related to soil erosion and sediment yield at the sub-basin scale. Among the source–sink landscape composition and configuration indicators, the composition indicator was positively correlated with soil erosion rate and sediment yield. In the configuration landscape indices, the shape index was negatively correlated with soil erosion rate and sediment yield; the fragmentation index was positively correlated with soil erosion rate and negatively correlated with sediment delivery rate. These results indicated that the optimization measures, such as increase in the area, connectivity and regularity of sediment-sink landscape, or decrease in the proportion, connectivity and regularity of sediment-source landscape, were favorable for soil conservation. Furthermore, the landscape indicators based on the source–sink theory could provide more information for landscape pattern optimization to reduce soil erosion.

Suggested Citation

  • Ying Xu & Haiping Tang & Bojie Wang & Jiao Chen, 2017. "Effects of landscape patterns on soil erosion processes in a mountain–basin system in the North China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1567-1585, July.
  • Handle: RePEc:spr:nathaz:v:87:y:2017:i:3:d:10.1007_s11069-017-2833-3
    DOI: 10.1007/s11069-017-2833-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2833-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2833-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liguang Jiang & Zhijun Yao & Zhaofei Liu & Shanshan Wu & Rui Wang & Lei Wang, 2015. "Estimation of soil erosion in some sections of Lower Jinsha River based on RUSLE," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1831-1847, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Bojie & Tang, Haiping & Xu, Ying, 2017. "Integrating ecosystem services and human well-being into management practices: Insights from a mountain-basin area, China," Ecosystem Services, Elsevier, vol. 27(PA), pages 58-69.
    2. Walter Chen & Kent Thomas, 2020. "Revised SEDD (RSEDD) Model for Sediment Delivery Processes at the Basin Scale," Sustainability, MDPI, vol. 12(12), pages 1-17, June.
    3. Zhongfa Zhou & Weiquan Zhao & Sisi Lv & Denghong Huang & Zulun Zhao & Yaopeng Sun, 2023. "Spatiotemporal Transfer of Source-Sink Landscape Ecological Risk in a Karst Lake Watershed Based on Sub-Watersheds," Land, MDPI, vol. 12(7), pages 1-19, July.
    4. Sumedh R. Kashiwar & Manik Chandra Kundu & Usha R. Dongarwar, 2022. "Soil erosion estimation of Bhandara region of Maharashtra, India, by integrated use of RUSLE, remote sensing, and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 937-959, January.
    5. Li Wu & Jing Zhou & Binggeng Xie, 2023. "Comparative Analysis of Temporal-Spatial Variation on Mountain-Flatland Landscape Pattern in Karst Mountainous Areas of Southwest China: A Case Study of Yuxi City," Land, MDPI, vol. 12(2), pages 1-17, February.
    6. Bojie Wang & Haiping Tang & Qin Zhang & Fengqi Cui, 2020. "Exploring Connections among Ecosystem Services Supply, Demand and Human Well-Being in a Mountain-Basin System, China," IJERPH, MDPI, vol. 17(15), pages 1-15, July.
    7. Jiyun Li & Yong Zhou & Qing Li & Siqi Yi & Lina Peng, 2022. "Exploring the Effects of Land Use Changes on the Landscape Pattern and Soil Erosion of Western Hubei Province from 2000 to 2020," IJERPH, MDPI, vol. 19(3), pages 1-27, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nan Shen & Zhanli Wang & Fengbao Zhang & Chunhong Zhou, 2023. "Response of Soil Detachment Rate to Sediment Load and Model Examination: A Key Process Simulation of Rill Erosion on Steep Loessial Hillslopes," IJERPH, MDPI, vol. 20(4), pages 1-12, February.
    2. Jun Luo & Xueyang Ma & Lei Wang & Bin Zhang & Xiao Yang & Tianxiang Yue, 2022. "The Influence of Short-Term Heavy Rainfall on Hydraulic Characteristics and Rill Formation in the Yuanmou Dry-Hot Valley," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    3. Nektarios N. Kourgialas & Georgios C. Koubouris & George P. Karatzas & Ioannis Metzidakis, 2016. "Assessing water erosion in Mediterranean tree crops using GIS techniques and field measurements: the effect of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 65-81, October.
    4. Elias Rodrigues Cunha & Vitor Matheus Bacani & Elói Panachuki, 2017. "Modeling soil erosion using RUSLE and GIS in a watershed occupied by rural settlement in the Brazilian Cerrado," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 851-868, January.
    5. Morteza Akbari & Ehsan Neamatollahi & Hadi Memarian & Mohammad Alizadeh Noughani, 2023. "Assessing impacts of floods disaster on soil erosion risk based on the RUSLE-GloSEM approach in western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1689-1710, June.
    6. Jun Pei & Wei Yang & Yangpeng Cai & Yujun Yi & Xiaoxiao Li, 2018. "Relationship between Vegetation and Environment in an Arid-Hot Valley in Southwestern China," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    7. Arun Mondal & Deepak Khare & Sananda Kundu, 2016. "Impact assessment of climate change on future soil erosion and SOC loss," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1515-1539, July.
    8. Liguo Zhang & Zhanqi Wang & Ji Chai & Yongpeng Fu & Chao Wei & Ying Wang, 2019. "Temporal and Spatial Changes of Non-Point Source N and P and Its Decoupling from Agricultural Development in Water Source Area of Middle Route of the South-to-North Water Diversion Project," Sustainability, MDPI, vol. 11(3), pages 1-23, February.
    9. Sumedh R. Kashiwar & Manik Chandra Kundu & Usha R. Dongarwar, 2022. "Soil erosion estimation of Bhandara region of Maharashtra, India, by integrated use of RUSLE, remote sensing, and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 937-959, January.
    10. Alexandra Pagáč Mokrá & Jakub Pagáč & Zlatica Muchová & František Petrovič, 2020. "Analysis of Ownership Data from Consolidated Land Threatened by Water Erosion in the Vlára Basin, Slovakia," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    11. H. Vijith & L. W. Seling & D. Dodge-Wan, 2018. "Estimation of soil loss and identification of erosion risk zones in a forested region in Sarawak, Malaysia, Northern Borneo," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1365-1384, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:87:y:2017:i:3:d:10.1007_s11069-017-2833-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.