IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v76y2015i3p1831-1847.html
   My bibliography  Save this article

Estimation of soil erosion in some sections of Lower Jinsha River based on RUSLE

Author

Listed:
  • Liguang Jiang
  • Zhijun Yao
  • Zhaofei Liu
  • Shanshan Wu
  • Rui Wang
  • Lei Wang

Abstract

Soil erosion increasingly poses a great threat to human food security and environmental quality. It is necessary to implement the assessment of soil erosion so as to provide precautionary measures and relevant suggestions for soil conservation. In this paper, the soil erosion model, revised universal soil loss equation (RUSLE), was used to quantify the soil loss in a large mountainous area of Lower Jinsha River Basin. The analysis of the datasets by means of geographic information systems (GIS) together with RUSLE led to the estimation of soil erosion. Results show that the average annual soil erosion was estimated at 52.1 t ha −1 year −1 and the total annual soil loss was 4.5 × 10 8 t. The highest erosion was found along the main course of Jinsha River. Soil erosion was serious in the elevation zone between 1,675 and 2,153 m and slope zone with slopes between 15° and 35°. As for land use types, cropland and grassland contributed 84.1 % to total soil loss due to the large areas and higher erosion rates. The results can be used to advice the local government in prioritizing the areas of immediate conservation practices. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Liguang Jiang & Zhijun Yao & Zhaofei Liu & Shanshan Wu & Rui Wang & Lei Wang, 2015. "Estimation of soil erosion in some sections of Lower Jinsha River based on RUSLE," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1831-1847, April.
  • Handle: RePEc:spr:nathaz:v:76:y:2015:i:3:p:1831-1847
    DOI: 10.1007/s11069-014-1569-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1569-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1569-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rahman, Md. Rejaur & Shi, Z.H. & Chongfa, Cai, 2009. "Soil erosion hazard evaluation—An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies," Ecological Modelling, Elsevier, vol. 220(13), pages 1724-1734.
    2. Jinghu Pan & Yan Wen, 2014. "Estimation of soil erosion using RUSLE in Caijiamiao watershed, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2187-2205, April.
    3. J. Onyando & P. Kisoyan & M. Chemelil, 2005. "Estimation of Potential Soil Erosion for River Perkerra Catchment in Kenya," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(2), pages 133-143, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arun Mondal & Deepak Khare & Sananda Kundu, 2016. "Impact assessment of climate change on future soil erosion and SOC loss," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1515-1539, July.
    2. Nektarios N. Kourgialas & Georgios C. Koubouris & George P. Karatzas & Ioannis Metzidakis, 2016. "Assessing water erosion in Mediterranean tree crops using GIS techniques and field measurements: the effect of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 65-81, October.
    3. Liguo Zhang & Zhanqi Wang & Ji Chai & Yongpeng Fu & Chao Wei & Ying Wang, 2019. "Temporal and Spatial Changes of Non-Point Source N and P and Its Decoupling from Agricultural Development in Water Source Area of Middle Route of the South-to-North Water Diversion Project," Sustainability, MDPI, vol. 11(3), pages 1-23, February.
    4. Elias Rodrigues Cunha & Vitor Matheus Bacani & Elói Panachuki, 2017. "Modeling soil erosion using RUSLE and GIS in a watershed occupied by rural settlement in the Brazilian Cerrado," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 851-868, January.
    5. Morteza Akbari & Ehsan Neamatollahi & Hadi Memarian & Mohammad Alizadeh Noughani, 2023. "Assessing impacts of floods disaster on soil erosion risk based on the RUSLE-GloSEM approach in western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1689-1710, June.
    6. Sumedh R. Kashiwar & Manik Chandra Kundu & Usha R. Dongarwar, 2022. "Soil erosion estimation of Bhandara region of Maharashtra, India, by integrated use of RUSLE, remote sensing, and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 937-959, January.
    7. Jun Pei & Wei Yang & Yangpeng Cai & Yujun Yi & Xiaoxiao Li, 2018. "Relationship between Vegetation and Environment in an Arid-Hot Valley in Southwestern China," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    8. Alexandra Pagáč Mokrá & Jakub Pagáč & Zlatica Muchová & František Petrovič, 2020. "Analysis of Ownership Data from Consolidated Land Threatened by Water Erosion in the Vlára Basin, Slovakia," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    9. Nan Shen & Zhanli Wang & Fengbao Zhang & Chunhong Zhou, 2023. "Response of Soil Detachment Rate to Sediment Load and Model Examination: A Key Process Simulation of Rill Erosion on Steep Loessial Hillslopes," IJERPH, MDPI, vol. 20(4), pages 1-12, February.
    10. H. Vijith & L. W. Seling & D. Dodge-Wan, 2018. "Estimation of soil loss and identification of erosion risk zones in a forested region in Sarawak, Malaysia, Northern Borneo," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1365-1384, June.
    11. Ying Xu & Haiping Tang & Bojie Wang & Jiao Chen, 2017. "Effects of landscape patterns on soil erosion processes in a mountain–basin system in the North China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1567-1585, July.
    12. Jun Luo & Xueyang Ma & Lei Wang & Bin Zhang & Xiao Yang & Tianxiang Yue, 2022. "The Influence of Short-Term Heavy Rainfall on Hydraulic Characteristics and Rill Formation in the Yuanmou Dry-Hot Valley," IJERPH, MDPI, vol. 19(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ranghu Wang & Shuwen Zhang & Jiuchun Yang & Luoman Pu & Chaobin Yang & Lingxue Yu & Liping Chang & Kun Bu, 2016. "Integrated Use of GCM, RS, and GIS for the Assessment of Hillslope and Gully Erosion in the Mushi River Sub-Catchment, Northeast China," Sustainability, MDPI, vol. 8(4), pages 1-20, March.
    2. Elsayed A. Abdelsamie & Mostafa A. Abdellatif & Farag O. Hassan & Ahmed A. El Baroudy & Elsayed Said Mohamed & Dmitry E. Kucher & Mohamed S. Shokr, 2022. "Integration of RUSLE Model, Remote Sensing and GIS Techniques for Assessing Soil Erosion Hazards in Arid Zones," Agriculture, MDPI, vol. 13(1), pages 1-19, December.
    3. Arun Mondal & Deepak Khare & Sananda Kundu, 2016. "Impact assessment of climate change on future soil erosion and SOC loss," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1515-1539, July.
    4. Chuhong Shen & Kangning Xiong & Tian Shu, 2022. "Dynamic Evolution and Quantitative Attribution of Soil Erosion Based on Slope Units: A Case Study of a Karst Plateau-Gorge Area in SW China," Land, MDPI, vol. 11(8), pages 1-18, July.
    5. Demetris Zarris & Marianna Vlastara & Dionysia Panagoulia, 2011. "Sediment Delivery Assessment for a Transboundary Mediterranean Catchment: The Example of Nestos River Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3785-3803, November.
    6. Shifa Chen & Xuan Zha, 2016. "Evaluation of soil erosion vulnerability in the Zhuxi watershed, Fujian Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1589-1607, July.
    7. Manoj Jain & Debjyoti Das, 2010. "Estimation of Sediment Yield and Areas of Soil Erosion and Deposition for Watershed Prioritization using GIS and Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2091-2112, August.
    8. Ashish Pandey & V. Chowdary & B. Mal, 2007. "Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(4), pages 729-746, April.
    9. Hadi Eskandari Damaneh & Hassan Khosravi & Khalil Habashi & Hamed Eskandari Damaneh & John P. Tiefenbacher, 2022. "The impact of land use and land cover changes on soil erosion in western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2185-2205, February.
    10. Hamed Ahmadpour & Ommolbanin Bazrafshan & Elham Rafiei-Sardooi & Hossein Zamani & Thomas Panagopoulos, 2021. "Gully Erosion Susceptibility Assessment in the Kondoran Watershed Using Machine Learning Algorithms and the Boruta Feature Selection," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    11. Yanhua Zhuang & Chao Du & Liang Zhang & Yun Du & Sisi Li, 2015. "Research trends and hotspots in soil erosion from 1932 to 2013: a literature review," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 743-758, November.
    12. P. Dabral & Neelakshi Baithuri & Ashish Pandey, 2008. "Soil Erosion Assessment in a Hilly Catchment of North Eastern India Using USLE, GIS and Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1783-1798, December.
    13. V. Chowdary & D. Chakraborthy & A. Jeyaram & Y. Murthy & J. Sharma & V. Dadhwal, 2013. "Multi-Criteria Decision Making Approach for Watershed Prioritization Using Analytic Hierarchy Process Technique and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3555-3571, August.
    14. Alelgn Ewunetu & Belay Simane & Ermias Teferi & Benjamin F. Zaitchik, 2021. "Mapping and Quantifying Comprehensive Land Degradation Status Using Spatial Multicriteria Evaluation Technique in the Headwaters Area of Upper Blue Nile River," Sustainability, MDPI, vol. 13(4), pages 1-27, February.
    15. D. Mandal & S. Patra & N. K. Sharma & N. M. Alam & C. Jana & R. Lal, 2023. "Impacts of Soil Erosion on Soil Quality and Agricultural Sustainability in the North-Western Himalayan Region of India," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    16. Sreenivasulu Vemu & Udaya Pinnamaneni, 2011. "Estimation of spatial patterns of soil erosion using remote sensing and GIS: a case study of Indravati catchment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1299-1315, December.
    17. Haibo Zhang & Jianjun Zhang & Shouhong Zhang & Chunxue Yu & Ruoxiu Sun & Dandan Wang & Chunzhu Zhu & Jianan Zhang, 2020. "Identification of Priority Areas for Soil and Water Conservation Planning Based on Multi-Criteria Decision Analysis Using Choquet Integral," IJERPH, MDPI, vol. 17(4), pages 1-22, February.
    18. Andrew K. Marondedze & Brigitta Schütt, 2020. "Assessment of Soil Erosion Using the RUSLE Model for the Epworth District of the Harare Metropolitan Province, Zimbabwe," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    19. L. Zhang & Ke Z. Bai & Man J. Wang & R. Karthikeyan, 2016. "Basin-scale spatial soil erosion variability: Pingshuo opencast mine site in Shanxi Province, Loess Plateau of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1213-1230, January.
    20. L. Zhang & Ke Bai & Man Wang & R. Karthikeyan, 2016. "Basin-scale spatial soil erosion variability: Pingshuo opencast mine site in Shanxi Province, Loess Plateau of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1213-1230, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:76:y:2015:i:3:p:1831-1847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.