IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v80y2016i2p775-796.html
   My bibliography  Save this article

Downslope runoff and erosion response of typical engineered landform to variable inflow rate patterns from upslope

Author

Listed:
  • L. Zhang
  • Z. Gao
  • Z. Li
  • H. Tian

Abstract

Downslope wash-scour erosion driven by upslope inflow from compacted platform plays an important role in the acceleration of water and soil loss from engineered landforms. To explore the quantitative effects of variable upslope runoff on downslope runoff and erosion, a typical abandoned spoil deposit derived from the construction of Shenfu Expressway was selected to conduct a set of field runoff scouring experiments on steep slope (72.7 %). Four types of upslope inflow rate patterns including constant inflow rate pattern and earlier, intermediately, as well as later peak inflow rate patterns were designed dependent on different rainfall patterns and the timing for peak inflow rate (total inflow amount was kept constant). Thus, the downslope runoff and erosion response of the selected abandoned spoil deposit under variable upslope inflow conditions were investigated, and the results reveal that: (i) Maximum peak runoff intensity and the timing for the maxima were greatly impacted by upslope inflow rate patterns; however, little impact was exerted on total surface runoff; total runoff from the inflow events with earlier, later, and intermediately peak inflow rate increased by 20.6, 11.7, and 8.5 % in comparison with that from the uniform inflow event. (ii) Runoff events induced by variable inflow rate patterns altered the sediment-yielding process as well as the spatial distribution of sediment yield in the downslope direction, and thus produced more soil loss. Total soil loss from inflow events with earlier, later, and intermediately peak inflow rate increased by 79.7, 78.2, and 14.2 %, respectively, in comparison with that from the uniform inflow event. Statistically, sediment yield from designated control section decreased as a negative exponential function of slope length downslope. (iii) Among the selected runoff erosivity factors, runoff depth, unit runoff erosivity, and stream power are effective indicators for predicting the area-specific sediment yield from individual upslope inflow events, regardless of inflow rate pattern. (iv) Area-specific sediment yield performs remarkable power function correlation with unit runoff erosivity; the unit runoff erosivity can represent the variation in runoff erosion dynamics from individual inflow events, regardless of upslope inflow rate patterns. The results may provide evidence for soil erosion degree assessment, erosion model construction in drastically disturbed areas, as well as the prevention of newly arising water and soil loss from engineered landforms. Copyright Springer Science+Business Media Dordrecht 2016

Suggested Citation

  • L. Zhang & Z. Gao & Z. Li & H. Tian, 2016. "Downslope runoff and erosion response of typical engineered landform to variable inflow rate patterns from upslope," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 775-796, January.
  • Handle: RePEc:spr:nathaz:v:80:y:2016:i:2:p:775-796
    DOI: 10.1007/s11069-015-1996-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1996-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1996-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanjeet Kumar & Ashok Mishra, 2015. "Critical Erosion Area Identification Based on Hydrological Response Unit Level for Effective Sedimentation Control in a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1749-1765, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingling Wang & Wenyi Yao & Peiqing Xiao & Xinxin Hou, 2022. "The Spatiotemporal Characteristics of Flow–Sediment Relationships in a Hilly Watershed of the Chinese Loess Plateau," IJERPH, MDPI, vol. 19(15), pages 1-12, July.
    2. Jun Luo & Xueyang Ma & Lei Wang & Bin Zhang & Xiao Yang & Tianxiang Yue, 2022. "The Influence of Short-Term Heavy Rainfall on Hydraulic Characteristics and Rill Formation in the Yuanmou Dry-Hot Valley," IJERPH, MDPI, vol. 19(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanjeet Kumar & Ashok Mishra & Umesh Kumar Singh, 2023. "Assessment of Land Cover Changes and Climate Variability Effects on Catchment Hydrology Using a Physically Distributed Model," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    2. Subhasis Giri & Zeyuan Qiu & Tony Prato & Biliang Luo, 2016. "An Integrated Approach for Targeting Critical Source Areas to Control Nonpoint Source Pollution in Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5087-5100, November.
    3. Giorgos Mallinis & Ioannis Z. Gitas & Georgios Tasionas & Fotis Maris, 2016. "Multitemporal Monitoring of Land Degradation Risk Due to Soil Loss in a Fire-Prone Mediterranean Landscape Using Multi-decadal Landsat Imagery," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1255-1269, February.
    4. Chenhui Li & Wenhai Shi & Mingbin Huang, 2023. "Effects of Crop Rotation and Topography on Soil Erosion and Nutrient Loss under Natural Rainfall Conditions on the Chinese Loess Plateau," Land, MDPI, vol. 12(2), pages 1-16, January.
    5. Urgessa Kenea & Dereje Adeba & Motuma Shiferaw Regasa & Michael Nones, 2021. "Hydrological Responses to Land Use Land Cover Changes in the Fincha’a Watershed, Ethiopia," Land, MDPI, vol. 10(9), pages 1-23, August.
    6. Julio Cesar Neves Santos & Eunice Maia Andrade & Pedro Henrique Augusto Medeiros & Maria João Simas Guerreiro & Helba Araújo Queiroz Palácio, 2017. "Effect of Rainfall Characteristics on Runoff and Water Erosion for Different Land Uses in a Tropical Semiarid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 173-185, January.
    7. Xiaolin Huang & Han Chen & Fang Xia & Zhenfeng Wang & Kun Mei & Xu Shang & Yuanyuan Liu & Randy A. Dahlgren & Minghua Zhang & Hong Huang, 2018. "Assessment of Long-Term Watershed Management on Reservoir Phosphorus Concentrations and Export Fluxes," IJERPH, MDPI, vol. 15(10), pages 1-12, October.
    8. L. T. Zhang & Z. L. Gao & Z. B. Li & H. W. Tian, 2016. "Downslope runoff and erosion response of typical engineered landform to variable inflow rate patterns from upslope," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 775-796, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:80:y:2016:i:2:p:775-796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.