IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i2p265-d1038120.html
   My bibliography  Save this article

Effects of Crop Rotation and Topography on Soil Erosion and Nutrient Loss under Natural Rainfall Conditions on the Chinese Loess Plateau

Author

Listed:
  • Chenhui Li

    (College of Resources and Environment, Northwest A & F University, Xianyang 712100, China
    State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Xianyang 712100, China)

  • Wenhai Shi

    (School of Water and Environment, Chang’an University, Xi’an 710054, China)

  • Mingbin Huang

    (State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Xianyang 712100, China)

Abstract

Erosive rainfall results in the loss of both soil and nutrients, which indirectly triggers soil deterioration and a reduction in land productivity. However, how rainfall affects runoff, soil erosion, and nutrient loss under different crop rotation patterns and topographic factors remains unclear. This experiment observed nine runoff-erosion plots on the Chinese Loess Plateau (CLP) from 2019 to 2020 to determine the effects of crop type, rotation pattern, and slope gradient and length on runoff, soil erosion, and nutrient loss. Runoff, soil erosion, and nutrient loss were highest for the fallow plots; values for these variables for spring corn and winter wheat plots were not significantly different. Crop rotation generated greater runoff, soil erosion, and nutrient loss compared to non-rotation. Soil erosion and associated nutrient loss increased, but not significantly, with slope for gradients of 0.5°, 1°, and 3°, while runoff and associated nutrient loss did not increase. In addition, soil erosion and associated nutrient loss were significantly greater for slope lengths of 20 m vs. 50 m. A structural equation model showed rainfall characteristics significantly impacted runoff and soil erosion and subsequently affected nutrient loss. This study increases the understanding of runoff, soil erosion, and nutrient loss from cropland with gentle slopes on the CLP.

Suggested Citation

  • Chenhui Li & Wenhai Shi & Mingbin Huang, 2023. "Effects of Crop Rotation and Topography on Soil Erosion and Nutrient Loss under Natural Rainfall Conditions on the Chinese Loess Plateau," Land, MDPI, vol. 12(2), pages 1-16, January.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:265-:d:1038120
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/2/265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/2/265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yujiao & Wang, Rui & Wang, Hao & Wang, Shulan & Wang, Xiaoli & Li, Jun, 2019. "Soil water use and crop yield increase under different long-term fertilization practices incorporated with two-year tillage rotations," Agricultural Water Management, Elsevier, vol. 221(C), pages 362-370.
    2. Zheng, Haijin & Nie, Xiaofei & Liu, Zhao & Mo, Minghao & Song, Yuejun, 2021. "Identifying optimal ridge practices under different rainfall types on runoff and soil loss from sloping farmland in a humid subtropical region of Southern China," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Anil Khokhar & Abrar Yousuf & Manmohanjit Singh & Vivek Sharma & Parminder Singh Sandhu & Gajjala Ravindra Chary, 2021. "Impact of Land Configuration and Strip-Intercropping on Runoff, Soil Loss and Crop Yields under Rainfed Conditions in the Shivalik Foothills of North-West, India," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    4. van de Giesen, Nick & Stomph, Tjeerd Jan & de Ridder, Nico, 2005. "Surface runoff scale effects in West African watersheds: modeling and management options," Agricultural Water Management, Elsevier, vol. 72(2), pages 109-130, March.
    5. Sanjeet Kumar & Ashok Mishra, 2015. "Critical Erosion Area Identification Based on Hydrological Response Unit Level for Effective Sedimentation Control in a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1749-1765, April.
    6. Luciene Gomes & Silvio J. C. Simões & Eloi Lennon Dalla Nora & Eráclito Rodrigues de Sousa-Neto & Maria Cristina Forti & Jean Pierre H. B. Ometto, 2019. "Agricultural Expansion in the Brazilian Cerrado: Increased Soil and Nutrient Losses and Decreased Agricultural Productivity," Land, MDPI, vol. 8(1), pages 1-26, January.
    7. Marianne E. Bechmann & Frederik Bøe, 2021. "Soil Tillage and Crop Growth Effects on Surface and Subsurface Runoff, Loss of Soil, Phosphorus and Nitrogen in a Cold Climate," Land, MDPI, vol. 10(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Huang & Zaijian Yuan & Mingguo Zheng & Yishan Liao & Kim Loi Nguyen & Thi Hong Nguyen & Samran Sombatpanit & Dingqiang Li, 2022. "Soil and Water Conservation Techniques in Tropical and Subtropical Asia: A Review," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    2. Sanjeet Kumar & Ashok Mishra & Umesh Kumar Singh, 2023. "Assessment of Land Cover Changes and Climate Variability Effects on Catchment Hydrology Using a Physically Distributed Model," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    3. Tatiana Minnikova & Sergey Kolesnikov & Tatiana Minkina & Saglara Mandzhieva, 2021. "Assessment of Ecological Condition of Haplic Chernozem Calcic Contaminated with Petroleum Hydrocarbons during Application of Bioremediation Agents of Various Natures," Land, MDPI, vol. 10(2), pages 1-20, February.
    4. Felicia Cheţan & Teodor Rusu & Cornel Cheţan & Camelia Urdă & Raluca Rezi & Alina Şimon & Ileana Bogdan, 2022. "Influence of Soil Tillage Systems on the Yield and Weeds Infestation in the Soybean Crop," Land, MDPI, vol. 11(10), pages 1-13, October.
    5. Yin, Jia De & Zhang, Xu Cheng & Ma, Yi Fan & Yu, Xian Feng & Hou, Hui Zhi & Wang, Hong Li & Fang, Yan Jie, 2022. "Vertical rotary sub-soiling under ridge–furrow with plastic mulching system increased crops yield by efficient use of deep soil moisture and rainfall," Agricultural Water Management, Elsevier, vol. 271(C).
    6. L. Zhang & Z. Gao & Z. Li & H. Tian, 2016. "Downslope runoff and erosion response of typical engineered landform to variable inflow rate patterns from upslope," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 775-796, January.
    7. Subhasis Giri & Zeyuan Qiu & Tony Prato & Biliang Luo, 2016. "An Integrated Approach for Targeting Critical Source Areas to Control Nonpoint Source Pollution in Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5087-5100, November.
    8. Felicia Cheţan & Teodor Rusu & Roxana Elena Călugăr & Cornel Chețan & Alina Şimon & Adrian Ceclan & Marius Bărdaș & Olimpia Smaranda Mintaș, 2022. "Research on the Interdependence Linkages between Soil Tillage Systems and Climate Factors on Maize Crop," Land, MDPI, vol. 11(10), pages 1-14, October.
    9. Dora Neina & Eunice Agyarko-Mintah, 2022. "Duration of Cultivation Has Varied Impacts on Soil Charge Properties in Different Agro-Ecological Zones of Ghana," Land, MDPI, vol. 11(10), pages 1-17, September.
    10. Giorgos Mallinis & Ioannis Z. Gitas & Georgios Tasionas & Fotis Maris, 2016. "Multitemporal Monitoring of Land Degradation Risk Due to Soil Loss in a Fire-Prone Mediterranean Landscape Using Multi-decadal Landsat Imagery," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1255-1269, February.
    11. Andrianarimanana, Mihasina Harinaivo & Yongjian, Pu & Rabezanahary Tanteliniaina, Mirindra Finaritra, 2023. "Assessment of the importance of climate, land, and soil on the global supply for agricultural products and global food security: Evidence from Madagascar," Food Policy, Elsevier, vol. 115(C).
    12. Julio Cesar Neves Santos & Eunice Maia Andrade & Pedro Henrique Augusto Medeiros & Maria João Simas Guerreiro & Helba Araújo Queiroz Palácio, 2017. "Effect of Rainfall Characteristics on Runoff and Water Erosion for Different Land Uses in a Tropical Semiarid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 173-185, January.
    13. Xujie Gong & Chein-Chi Chang, 2022. "Monetized Estimates of the Ecosystem Service Value of Urban Blue and Green Infrastructure and Analysis: A Case Study of Changsha, China," Sustainability, MDPI, vol. 14(23), pages 1-18, December.
    14. Lishu Wang & Haigang Guo & Lixuan Wang & Dongjuan Cheng, 2022. "Suitable Tillage Depth Promotes Maize Yields by Changing Soil Physical and Chemical Properties in A 3-Year Experiment in the North China Plain," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    15. Xiaolin Huang & Han Chen & Fang Xia & Zhenfeng Wang & Kun Mei & Xu Shang & Yuanyuan Liu & Randy A. Dahlgren & Minghua Zhang & Hong Huang, 2018. "Assessment of Long-Term Watershed Management on Reservoir Phosphorus Concentrations and Export Fluxes," IJERPH, MDPI, vol. 15(10), pages 1-12, October.
    16. Dora Neina & Eunice Agyarko-Mintah, 2023. "Differential Impacts of Cropland Expansion on Soil Biological Indicators in Two Ecological Zones," Sustainability, MDPI, vol. 15(10), pages 1-14, May.
    17. Jullian Souza Sone & Paulo T. Sanches de Oliveira & Pedro A. Pereira Zamboni & Nelson O. Motta Vieira & Glauber Altrão Carvalho & Manuel C. Motta Macedo & Alexandre Romeiro de Araujo & Denise Baptagli, 2019. "Effects of Long-Term Crop-Livestock-Forestry Systems on Soil Erosion and Water Infiltration in a Brazilian Cerrado Site," Sustainability, MDPI, vol. 11(19), pages 1-13, September.
    18. Urgessa Kenea & Dereje Adeba & Motuma Shiferaw Regasa & Michael Nones, 2021. "Hydrological Responses to Land Use Land Cover Changes in the Fincha’a Watershed, Ethiopia," Land, MDPI, vol. 10(9), pages 1-23, August.
    19. Valter S. Marques & Marcos B. Ceddia & Mauro A. H. Antunes & Daniel F. Carvalho & Jamil A. A. Anache & Dulce B. B. Rodrigues & Paulo Tarso S. Oliveira, 2019. "USLE K-Factor Method Selection for a Tropical Catchment," Sustainability, MDPI, vol. 11(7), pages 1-17, March.
    20. Ma. del Carmen Ponce-Rodríguez & Francisco Oscar Carrete-Carreón & Gerardo Alonso Núñez-Fernández & José de Jesús Muñoz-Ramos & María-Elena Pérez-López, 2021. "Keyline in Bean Crop ( Phaseolus vulgaris L.) for Soil and Water Conservation," Sustainability, MDPI, vol. 13(17), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:265-:d:1038120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.