IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v306y2024ics0378377424005201.html
   My bibliography  Save this article

Evaluation of adaptive capacity of slope regulation and storage measures on the Loess Plateau under drought stress

Author

Listed:
  • Yan, Siying
  • Weng, Baisha
  • Yan, Denghua
  • Fu, Qiang
  • Wang, Hao

Abstract

The study evaluated the adaptive ability of slope regulation and storage measures (SRASM) under drought stress, providing scientific basis for improving water resource management and ecological protection in the arid environment of the Loess Plateau region. Four SRASM including afforestation on the hilltop (forestland engineering), returning farmland to forest on the hillside (grassland engineering), building terraces on the hillside (terraced fields engineering) and damming and silting on the valley floor (silting dam engineering) can effectively solve the problem of water and soil loss on the Loess Plateau. However, it is still unclear how the adaptive capacity (resistance and resilience) of these SRASM under drought stress. This study took the above four SRASM as the study object, used the performance of the four SRASM after drought and rehydration events as the basis for judging the adaptive capacity under drought stress. It proposed evaluation methods for drought and rehydration events, as well as calculation methods for resistance and resilience. Furthermore, it analyzed the adaptive capacity of different SRASM and different sub-basins in the middle reaches of the Yellow River under drought stress, as well as the impact of slope on adaptive capacity. The results showed that when light and moderate drought occurred, four SRASM recovered to their normal state after rehydration. In terms of resilience, forestland engineering > grassland engineering > terraced fields engineering > silting dam engineering, and grassland engineering had the most prominent ability to resist drought. As the slope increased, the adaptive capacity decreased. From a spatial perspective, the resilience in the western part of the middle reaches of the Yellow River was lower than that in the eastern, and the spatial distribution of resistance in the middle reaches of the Yellow River generally decreased from northwest to southeast.

Suggested Citation

  • Yan, Siying & Weng, Baisha & Yan, Denghua & Fu, Qiang & Wang, Hao, 2024. "Evaluation of adaptive capacity of slope regulation and storage measures on the Loess Plateau under drought stress," Agricultural Water Management, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424005201
    DOI: 10.1016/j.agwat.2024.109184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424005201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chenhui Li & Wenhai Shi & Mingbin Huang, 2023. "Effects of Crop Rotation and Topography on Soil Erosion and Nutrient Loss under Natural Rainfall Conditions on the Chinese Loess Plateau," Land, MDPI, vol. 12(2), pages 1-16, January.
    2. Ruqing Zhang & Lu Li & Ye Zhang & Feini Huang & Jianduo Li & Wei Liu & Taoning Mao & Zili Xiong & Wei Shangguan, 2021. "Assessment of Agricultural Drought Using Soil Water Deficit Index Based on ERA5-Land Soil Moisture Data in Four Southern Provinces of China," Agriculture, MDPI, vol. 11(5), pages 1-19, May.
    3. Cai, Fu & Zhang, Yushu & Mi, Na & Ming, Huiqing & Zhang, Shujie & Zhang, Hui & Zhao, Xianli, 2020. "Maize (Zea mays L.) physiological responses to drought and rewatering, and the associations with water stress degree," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Shi, Peng & Li, Peng & Li, Zhanbin & Sun, Jingmei & Wang, Dejun & Min, Zhiqiang, 2022. "Effects of grass vegetation coverage and position on runoff and sediment yields on the slope of Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 259(C).
    5. He, Juan & Shi, Xueyi & Fu, Yangjun & Yuan, Ye, 2020. "Evaluation and simulation of the impact of land use change on ecosystem services trade-offs in ecological restoration areas, China," Land Use Policy, Elsevier, vol. 99(C).
    6. Sun, Caixia & Gao, Xiaoxiao & Chen, Xing & Fu, Jianqi & Zhang, Yulan, 2016. "Metabolic and growth responses of maize to successive drought and re-watering cycles," Agricultural Water Management, Elsevier, vol. 172(C), pages 62-73.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing, Lanshu & Weng, Baisha & Yan, Denghua & Yuan, Fei & Zhang, Shanjun & Bi, Wuxia & Yan, Siying, 2023. "Assessment of resilience in maize suitable planting areas under drought stress," Agricultural Water Management, Elsevier, vol. 277(C).
    2. Yujiang Yan & Jiangui Li & Junli Li & Teng Jiang, 2023. "Spatio-Temporal Measurement and Driving Factor Analysis of Ecosystem Service Trade-Offs and Synergy in the Kaidu–Kongque River Basin, Xinjiang, China," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
    3. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    4. Ling Zhang & Weipeng Li & Zhongsheng Chen & Ruilin Hu & Zhaoqi Yin & Chanrong Qin & Xueqi Li, 2025. "Impacts and Prediction of Land Use/Cover Change on Runoff in the Jinghe River Basin, China," Land, MDPI, vol. 14(3), pages 1-23, March.
    5. Lulu Bai & Peng Shi & Zhanbin Li & Peng Li & Zhun Zhao & Jingbin Dong & Tanbao Li & Jingmei Sun & Dejun Wang, 2024. "Correlation Between Water Erosion and Hydraulics of Slope–Gully Systems According to Check Dam Siltation Depth," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(9), pages 3489-3503, July.
    6. Gao, Jia & Li, Lin & Ding, Risheng & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Kang, Jian & Xu, Wanli & Tang, Guangmu, 2025. "Grain yield and water productivity of maize under deficit irrigation and salt stress: Evidences from field experiment and literatures," Agricultural Water Management, Elsevier, vol. 307(C).
    7. Xue Zhou & Yang Zhou, 2021. "Spatio-Temporal Variation and Driving Forces of Land-Use Change from 1980 to 2020 in Loess Plateau of Northern Shaanxi, China," Land, MDPI, vol. 10(9), pages 1-17, September.
    8. Zhi, Ximin & Bian, Xiaohua & Yu, Jinlong & Xiao, Xiaolu & Duan, Bo & Huang, Fangyuan & Jiang, Zhan & Zhou, Guangsheng & Ma, Ni, 2024. "Comparative metabolomics analysis of tolerant and sensitive genotypes of rapeseed (Brassica napus L.) seedlings under drought stress," Agricultural Water Management, Elsevier, vol. 296(C).
    9. Xiao, Chao & Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Li, Yi & Sun, Shikun & Pulatov, Alim, 2021. "Optimizing irrigation amount and fertilization rate of drip-fertigated spring maize in northwest China based on multi-level fuzzy comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 257(C).
    10. Wenqing Li & Guohua He & Yong Zhao & Zhao Liu & Fan He & Haibin Wang, 2023. "An Analysis of Runoff Variation in a Small Basin in the Loess Plateau: Identifying the Variation Causes and Implications for Sustainable Water Management," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    11. Guo, Yuling & Huang, Guanmin & Wei, Zexin & Feng, Tianyu & Zhang, Kun & Zhang, Mingcai & Li, Zhaohu & Zhou, Yuyi & Duan, Liusheng, 2023. "Exogenous application of coronatine and alginate oligosaccharide to maize seedlings enhanced drought tolerance at seedling and reproductive stages," Agricultural Water Management, Elsevier, vol. 279(C).
    12. Li, Nannan & Shi, Xiaojuan & Zhang, Humei & Shi, Feng & Zhang, Hongxia & Liang, Qi & Hao, Xianzhe & Luo, Honghai & Wang, Jun, 2024. "Optimizing irrigation strategies to improve the soil microenvironment and enhance cotton water productivity under deep drip irrigation," Agricultural Water Management, Elsevier, vol. 305(C).
    13. Xu, Lichang & Ning, Shaowei & Xu, Xiaoyan & Wang, Shenghan & Chen, Le & Long, Rujian & Zhang, Shengyi & Zhou, Yuliang & Zhang, Min & Thapa, Bhesh Raj, 2024. "Comparative analysis of machine learning models and explainable AI for agriculture drought prediction: A case study of the Ta-pieh mountains," Agricultural Water Management, Elsevier, vol. 306(C).
    14. Shutong Yang & Peng Shi & Peng Li & Zhanbin Li & Hongbo Niu & Pengju Zu & Lingzhou Cui, 2022. "Ecosystem Services Trade-Offs and Synergies following Vegetation Restoration on the Loess Plateau of China," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    15. Li, Yibo & Song, He & Zhou, Li & Xu, Zhenzhu & Zhou, Guangsheng, 2019. "Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire leaf lifespan in a maize field," Agricultural Water Management, Elsevier, vol. 211(C), pages 190-201.
    16. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Wang, Zhihui, 2025. "Deficit irrigation enhances yield and water productivity of apples by inhibiting excessive vegetative growth and improving photosynthetic performance," Agricultural Water Management, Elsevier, vol. 307(C).
    17. Yao, Yuxia & Liao, Xingliang & Xiao, Junlan & He, Qiulan & Shi, Weiyu, 2023. "The sensitivity of maize evapotranspiration to vapor pressure deficit and soil moisture with lagged effects under extreme drought in Southwest China," Agricultural Water Management, Elsevier, vol. 277(C).
    18. Gao, Jia & Liu, Ninggang & Wang, Xianqi & Niu, Zuoyuan & Liao, Qi & Ding, Risheng & Du, Taisheng & Kang, Shaozhong & Tong, Ling, 2024. "Maintaining grain number by reducing grain abortion is the key to improve water use efficiency of maize under deficit irrigation and salt stress," Agricultural Water Management, Elsevier, vol. 294(C).
    19. Zhang, Jili & Wang, Peng & Long, Huaiyu & Su, Shanshan & Wu, Yige & Wang, Hongrong, 2022. "Metabolomics analysis reveals the physiological mechanism underlying growth restriction in maize roots under continuous negative pressure and stable water supply," Agricultural Water Management, Elsevier, vol. 263(C).
    20. Marcelo de Almeida Silva & Hariane Luiz Santos & Lusiane de Sousa Ferreira & Dayane Mércia Ribeiro Silva & Jania Claudia Camilo dos Santos & Fernanda Pacheco de Almeida Prado Bortolheiro, 2023. "Physiological Changes and Yield Components of Safflower ( Carthamus tinctorius L.) Lines as a Function of Water Deficit and Recovery in the Flowering Phase," Agriculture, MDPI, vol. 13(3), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424005201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.