IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6728-d1124859.html
   My bibliography  Save this article

The Role of High Nature Value Farmland for Landscape and Soil Pollution Assessment in a Coastal Delta in China Based on High-Resolution Indicators

Author

Listed:
  • Yingqiang Song

    (School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China)

  • Zeao Zhang

    (School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China)

  • Yan Li

    (School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China)

  • Runyan Zou

    (South China Academy of Natural Resources Science and Technology, Guangzhou 510610, China
    Guangdong Youyuan Land Information Technology Co., Ltd., Guangzhou 510610, China)

  • Lu Wang

    (School of Public Administration, Hainan University, Haikou 570228, China)

  • Hao Yang

    (College of Tropical Crops, Hainan University, Haikou 570228, China)

  • Yueming Hu

    (College of Tropical Crops, Hainan University, Haikou 570228, China)

Abstract

High nature value farmland (HNVf) plays an important role in improving biodiversity and landscape heterogeneity, and it is effective in curbing soil non-point source pollution and carbon loss in sustainable eco-agricultural systems. To this end, we developed high-resolution (2 m × 2 m) indicators for the identification of potential HNVf based on GF1B remote sensing imaging, including the land cover (LC), normalized difference vegetation index (NDVI), Shannon diversity (SH), and Simpsons index (SI). The statistical results for LC with high resolution (2 m × 2 m) showed that there was 41.05% of intensive farmland in the study area, and the pixel proportion of the HNVf map (above G3) was 44.30%. These HNVf patches were concentrated in the transition zone around the edge of the intensive farmland and around rivers, with characteristics of HNVf type 2 being significantly reflected. Among the real-life areas from Map World, elements (i.e., linear forests, rivers, and semi-natural vegetation etc.) of HNVf accounted for more than 70% of these regions, while a field survey based on potential HNVf patches also exhibited significant HNVf characteristics in comparison with intensive farmlands. In addition, from 2002 to 2020, the total migration distance of the gravity center of intensive farmland in the study area was 7.65 km. Moreover, four landscape indices (patch COH index, landscape division index, SH, and SI) slowly increased, indicating that the species richness and biodiversity were improved. It was also found that a series of ecological protection policies provide effective guarantees for an improvement in species diversity and the development of HNVf in the study area. In particular, the average contents of As, Cr, Cu, Ni, and Zn in the HNVf were 20.99 mg kg −1 , 121.11 mg kg −1 , 21.97 mg kg −1 , 29.34 mg kg −1 , and 41.68 mg kg −1 , respectively, which were lower in comparison with the intensive farmland soil. This is the first HNVf exploration for landscape and soil pollution assessment in a coastal delta in China, and could provide powerful guidance for the ecological protection of farmland soil and the high-quality development of sustainable agriculture.

Suggested Citation

  • Yingqiang Song & Zeao Zhang & Yan Li & Runyan Zou & Lu Wang & Hao Yang & Yueming Hu, 2023. "The Role of High Nature Value Farmland for Landscape and Soil Pollution Assessment in a Coastal Delta in China Based on High-Resolution Indicators," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6728-:d:1124859
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6728/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6728/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Li & Long, Hualou & Tu, Shuangshuang & Zhang, Yingnan & Zheng, Yuhan, 2020. "Farmland transition in China and its policy implications," Land Use Policy, Elsevier, vol. 92(C).
    2. Peppiette, Zelie, "undated". "The challenge of environmental monitoring: the example of HNV farmland," 122nd Seminar, February 17-18, 2011, Ancona, Italy 99586, European Association of Agricultural Economists.
    3. Chen, Wanxu & Ye, Xinyue & Li, Jiangfeng & Fan, Xin & Liu, Qingsong & Dong, Weichuan, 2019. "Analyzing requisition–compensation balance of farmland policy in China through telecoupling: A case study in the middle reaches of Yangtze River Urban Agglomerations," Land Use Policy, Elsevier, vol. 83(C), pages 134-146.
    4. Bonato, Marta & Cian, Fabio & Giupponi, Carlo, 2019. "Combining LULC data and agricultural statistics for A better identification and mapping of High nature value farmland: A case study in the veneto Plain, Italy," Land Use Policy, Elsevier, vol. 83(C), pages 488-504.
    5. Xu, Duanyang & Li, Dajing, 2020. "Variation of wind erosion and its response to ecological programs in northern China in the period 1981–2015," Land Use Policy, Elsevier, vol. 99(C).
    6. An, Yi & Liu, Shiliang & Sun, Yongxiu & Shi, Fangning & Zhao, Shuang, 2020. "Negative effects of farmland expansion on multi-species landscape connectivity in a tropical region in Southwest China," Agricultural Systems, Elsevier, vol. 179(C).
    7. Wang, Huan & Zhang, Chao & Yao, Xiaochuang & Yun, Wenju & Ma, Jiani & Gao, Lulu & Li, Pengshan, 2022. "Scenario simulation of the tradeoff between ecological land and farmland in black soil region of Northeast China," Land Use Policy, Elsevier, vol. 114(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiawuhaier Aishanjiang & Xiaofen Li & Fan Qiu & Yichen Jia & Kai Li & Junnan Xia, 2025. "Spatiotemporal Evolution and Proximity Dynamics of “Three-Zone Spaces” in Yangtze River Basin Counties from 2000 to 2020," Land, MDPI, vol. 14(7), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianya Zhao & Fanhao Yang & Yanglan Zhang & Shu Wang, 2025. "Increase in Grain Production Potential of China Under 2030 Well-Facilitated Farmland Construction Goal," Land, MDPI, vol. 14(8), pages 1-31, July.
    2. Quanfeng Li & Zhe Dong & Guoming Du & Aizheng Yang, 2021. "Spatial Differentiation of Cultivated Land Use Intensification in Village Settings: A Survey of Typical Chinese Villages," Land, MDPI, vol. 10(3), pages 1-18, March.
    3. Yemei Li & Yanfei Shan & Ying Chen, 2021. "Analysis of Farmland Abandonment and Government Supervision Traps in China," IJERPH, MDPI, vol. 18(4), pages 1-27, February.
    4. Lu Han & Yanbo Qu & Shufeng Liang & Luyan Shi & Min Zhang & Haiyan Jia, 2024. "Spatiotemporal Differentiation of Land Ecological Security and Optimization Based on GeoSOS-FLUS Model: A Case Study of the Yellow River Delta in China Toward Sustainability," Land, MDPI, vol. 13(11), pages 1-21, November.
    5. Xinyao Li & Lingzhi Wang & Bryan Pijanowski & Lingpeng Pan & Hichem Omrani & Anqi Liang & Yi Qu, 2022. "The Spatio-Temporal Pattern and Transition Mode of Recessive Cultivated Land Use Morphology in the Huaibei Region of the Jiangsu Province," Land, MDPI, vol. 11(11), pages 1-16, November.
    6. Shafi, Ahsan & Wang, Zhanqi & Ehsan, Muhsan & Riaz, Faizan Ahmed & Ali, Muhammad Rashid & Xu, Feng, 2023. "A game theory approach to land acquisition conflicts in Pakistan," Land Use Policy, Elsevier, vol. 132(C).
    7. Jixian Mo & Jie Li & Ziying Wang & Ziwei Song & Jingyi Feng & Yanjing Che & Jiandong Rong & Siyu Gu, 2023. "Spatiotemporal Evolution of Wind Erosion and Ecological Service Assessments in Northern Songnen Plain, China," Sustainability, MDPI, vol. 15(7), pages 1-20, March.
    8. Alessia Cogato & Andrea Pezzuolo & Claus Grøn Sørensen & Roberta De Bei & Marco Sozzi & Francesco Marinello, 2020. "A GIS-Based Multicriteria Index to Evaluate the Mechanisability Potential of Italian Vineyard Area," Land, MDPI, vol. 9(11), pages 1-17, November.
    9. Dang, Yuxuan & Zhao, Zhenting & Kong, Xiangbin & Lei, Ming & Liao, Yubo & Xie, Zhen & Song, Wei, 2023. "Discerning the process of cultivated land governance transition in China since the reform and opening-up-- Based on the multiple streams framework," Land Use Policy, Elsevier, vol. 133(C).
    10. Zhiyuan Zhu & Zhenzhong Dai & Shilin Li & Yongzhong Feng, 2022. "Spatiotemporal Evolution of Non-Grain Production of Cultivated Land and Its Underlying Factors in China," IJERPH, MDPI, vol. 19(13), pages 1-15, July.
    11. Kun Zeng & Xiong Duan & Bin Chen & Lanxi Jia, 2025. "Spatiotemporal Heterogeneity of Eco-Efficiency of Cultivated Land Use and Its Influencing Factors: Evidence from the Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 17(7), pages 1-23, March.
    12. Xinyuan Liang & Jie He & Xiaobin Jin & Xiaolin Zhang & Jingping Liu & Yinkang Zhou, 2024. "A new framework for optimizing ecological conservation redline of China: A case from an environment‐development conflict area," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(3), pages 1616-1633, June.
    13. Wei Li & Zhenjie Chen & Manchun Li & Xiaoqian Qiu & QiQi Zhao & Yihua Chen, 2025. "Spatial conflict identification and scenario coordination for construction‒agricultural‒ecological land use," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 1933-1961, January.
    14. Chen, Wanxu & Chi, Guangqing & Li, Jiangfeng, 2020. "The spatial aspect of ecosystem services balance and its determinants," Land Use Policy, Elsevier, vol. 90(C).
    15. Wu, Xiaoran & Zhao, Na & Wang, Yuwei & Zhang, Liqiang & Wang, Wei & Liu, Yansui, 2024. "Cropland non-agriculturalization caused by the expansion of built-up areas in China during 1990–2020," Land Use Policy, Elsevier, vol. 146(C).
    16. Xiuyu Huang & Ying Wang & Wanyi Liang & Zhaojun Wang & Xiao Zhou & Qinqiang Yan, 2023. "Spatial–Temporal Evolution and Driving Factors of the Low–Carbon Transition of Farmland Use in Coastal Areas of Guangdong Province," Land, MDPI, vol. 12(5), pages 1-23, May.
    17. Yanbo Qu & Meijing Wu & Lingyun Zhan & Ran Shang, 2023. "Multifunctional Evolution and Allocation Optimization of Rural Residential Land in China," Land, MDPI, vol. 12(2), pages 1-23, January.
    18. Hao Li & Wenjing Zhao & Jing Wang & Xiaozhe Geng & Chunyu Song, 2024. "Evaluating the Accuracy of Contour Ridgeline Positioning for Soil Conservation in the Northeast Black Soil Region of China," Sustainability, MDPI, vol. 16(8), pages 1-15, April.
    19. Xiaochen Liu & Zhenxing Bian & Zhentao Sun & Chuqiao Wang & Zhiquan Sun & Shuang Wang & Guoli Wang, 2023. "Integrating Landscape Pattern Metrics to Map Spatial Distribution of Farmland Soil Organic Carbon on Lower Liaohe Plain of Northeast China," Land, MDPI, vol. 12(7), pages 1-19, July.
    20. Yanqi Zhao & Yue Zhang & Ying Yang & Fan Li & Rongkun Dai & Jianlin Li & Mingshi Wang & Zhenhua Li, 2023. "The Impact of Land Use Structure Change on Utilization Performance in Henan Province, China," IJERPH, MDPI, vol. 20(5), pages 1-18, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6728-:d:1124859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.