IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i12p7036-d834400.html
   My bibliography  Save this article

Impact of Plantation Induced Forest Degradation on the Outbreak of Emerging Infectious Diseases—Wayanad District, Kerala, India

Author

Listed:
  • Kakoli Saha

    (Department of Planning, School of Planning and Architecture, Bhopal 462030, India)

  • Debjani Ghatak

    (Department of Geography, Texas A&M University, College Station, TX 77843, USA)

  • Nair Shruti S. Muralee

    (Madhya Pradesh Rurban Mission, Government of India, Bhopal 462030, India)

Abstract

The world has been facing a pandemic owing to COVID-19. We have also seen the geographic expansion and outbreaks of other emerging infectious diseases (EID) in recent years. This paper investigates the direct and indirect effects of land use land cover change (LULCC) on EID outbreaks in the context of Wayanad District of Kerala, India. Wayanad is in the vulnerable tropical forested region, and it is named as one of the four environmental change hotspots. The focus of this project is mainly three EIDs prevalent in this region: Kyasanur forest disease (KFD), Dengue and Leptospirosis. Our results, based on topographical map, remote sensing and extensive field work, show that the natural forest in Wayanad was replaced with agriculture and forest plantation during 1950–2018. This paper further suggests that encroachment of forest by forest plantation causes the human–animal conflict resulting in the outbreak of KFD cases. Our analysis reveals that a high number of Dengue cases is found in the forested regions of the district and over the adjacent human-made agriculture plantation areas. High and medium number of Leptospirosis cases contain a high portion of land area devoted to paddy cultivation and agricultural plantation. In summary, the results clearly show the linkage between the outbreak of above mentioned EIDs and LULCC in the context of Wayanad district, Kerala. We also discuss in detail the causal pathway involving human–environmental dynamics through which plantation leads to the outbreak of KFD. Replacing forests with plantations poses an alarming threat of disease outbreak in the community.

Suggested Citation

  • Kakoli Saha & Debjani Ghatak & Nair Shruti S. Muralee, 2022. "Impact of Plantation Induced Forest Degradation on the Outbreak of Emerging Infectious Diseases—Wayanad District, Kerala, India," IJERPH, MDPI, vol. 19(12), pages 1-14, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:12:p:7036-:d:834400
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/12/7036/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/12/7036/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luke Gibson & Tien Ming Lee & Lian Pin Koh & Barry W. Brook & Toby A. Gardner & Jos Barlow & Carlos A. Peres & Corey J. A. Bradshaw & William F. Laurance & Thomas E. Lovejoy & Navjot S. Sodhi, 2011. "Primary forests are irreplaceable for sustaining tropical biodiversity," Nature, Nature, vol. 478(7369), pages 378-381, October.
    2. Kate E. Jones & Nikkita G. Patel & Marc A. Levy & Adam Storeygard & Deborah Balk & John L. Gittleman & Peter Daszak, 2008. "Global trends in emerging infectious diseases," Nature, Nature, vol. 451(7181), pages 990-993, February.
    3. Felicia Keesing & Lisa K. Belden & Peter Daszak & Andrew Dobson & C. Drew Harvell & Robert D. Holt & Peter Hudson & Anna Jolles & Kate E. Jones & Charles E. Mitchell & Samuel S. Myers & Tiffany Bogich, 2010. "Impacts of biodiversity on the emergence and transmission of infectious diseases," Nature, Nature, vol. 468(7324), pages 647-652, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Zhang & Jason Rohr & Ruina Cui & Yusi Xin & Lixia Han & Xiaona Yang & Shimin Gu & Yuanbao Du & Jing Liang & Xuyu Wang & Zhengjun Wu & Qin Hao & Xuan Liu, 2022. "Biological invasions facilitate zoonotic disease emergences," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Blanco, Esther & Baier, Alexandra & Holzmeister, Felix & Jaber-Lopez, Tarek & Struwe, Natalie, 2022. "Substitution of social sustainability concerns under the Covid-19 pandemic," Ecological Economics, Elsevier, vol. 192(C).
    3. Rosemary A. McFarlane & Adrian C. Sleigh & Anthony J. McMichael, 2013. "Land-Use Change and Emerging Infectious Disease on an Island Continent," IJERPH, MDPI, vol. 10(7), pages 1-21, June.
    4. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Prevention and mitigation of epidemics: Biodiversity conservation and confinement policies," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    5. Blanco, Esther & Struwe, Natalie & Walker, James M., 2021. "Experimental evidence on sharing rules and additionality in transfer payments," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 1221-1247.
    6. Magdalena Meyer & Dominik W. Melville & Heather J. Baldwin & Kerstin Wilhelm & Evans Ewald Nkrumah & Ebenezer K. Badu & Samuel Kingsley Oppong & Nina Schwensow & Adam Stow & Peter Vallo & Victor M. Co, 2024. "Bat species assemblage predicts coronavirus prevalence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Serge Morand & Sathaporn Jittapalapong & Yupin Suputtamongkol & Mohd Tajuddin Abdullah & Tan Boon Huan, 2014. "Infectious Diseases and Their Outbreaks in Asia-Pacific: Biodiversity and Its Regulation Loss Matter," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-7, February.
    8. Wang, Hsiao-Hsuan & Grant, W.E. & Teel, P.D. & Hamer, S.A., 2016. "Tick-borne infectious agents in nature: Simulated effects of changes in host density on spatial-temporal prevalence of infected ticks," Ecological Modelling, Elsevier, vol. 323(C), pages 77-86.
    9. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Quiñoá-Piñeiro, Lara & Pérez-Pico, Ada M., 2022. "US biopharmaceutical companies' stock market reaction to the COVID-19 pandemic. Understanding the concept of the ‘paradoxical spiral’ from a sustainability perspective," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    10. Serge Morand & Sathaporn Jittapalapong, 2016. "Infectious Diseases and Their Outbreaks in Asia-Pacific: Biodiversity and Its Regulation Loss Matter," Working Papers id:10125, eSocialSciences.
    11. Tinggui Chen & Hui Wang, 2022. "Consumers' purchase intention of wild freshwater fish during the COVID‐19 pandemic," Agribusiness, John Wiley & Sons, Ltd., vol. 38(4), pages 832-849, October.
    12. Rivera-Ferre, Marta G. & López-i-Gelats, Feliu & Ravera, Federica & Oteros-Rozas, Elisa & di Masso, Marina & Binimelis, Rosa & El Bilali, Hamid, 2021. "The two-way relationship between food systems and the COVID19 pandemic: causes and consequences," Agricultural Systems, Elsevier, vol. 191(C).
    13. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Prevention and mitigation of epidemics: Biodiversity conservation and confinement policies," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    14. Naughtin, Claire & Hajkowicz, Stefan & Schleiger, Emma & Bratanova, Alexandra & Cameron, Alicia & Zamin, T & Dutta, A, 2022. "Our Future World: Global megatrends impacting the way we live over coming decades," MPRA Paper 113900, University Library of Munich, Germany.
    15. Esther Blanco & Alexandra Baier & Felix Holzmeister & Tarek Jaber-Lopez & Natalie Struwe, 2020. "Substitution of social concerns under the Covid-19 pandemic," Working Papers 2020-30, Faculty of Economics and Statistics, Universität Innsbruck.
    16. Hajkowicz, Stefan & Bratanova, Alexandra & Schleiger, Emma & Brosnan, A, 2020. "Global trade and investment megatrends," MPRA Paper 113240, University Library of Munich, Germany.
    17. Voinson, Marina & Smadi, Charline & Billiard, Sylvain, 2022. "How does the host community structure affect the epidemiological dynamics of emerging infectious diseases?," Ecological Modelling, Elsevier, vol. 472(C).
    18. Georgios Tsantopoulos & Aristotelis C. Papageorgiou & Evangelia Karasmanaki, 2021. "COVID-19: An Outcome of Biodiversity Loss or a Conspiracy? Investigating the Attitudes of Environmental Students," Sustainability, MDPI, vol. 13(9), pages 1-20, May.
    19. Fabrizio Carmignani & Sriram Shankar & Eng Tan & Kam Tang, 2014. "Identifying covariates of population health using extreme bound analysis," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 15(5), pages 515-531, June.
    20. Nikolett Orosz & Tünde Tóthné Tóth & Gyöngyi Vargáné Gyuró & Zsoltné Tibor Nábrádi & Klára Hegedűsné Sorosi & Zsuzsa Nagy & Éva Rigó & Ádám Kaposi & Gabriella Gömöri & Cornelia Melinda Adi Santoso & A, 2022. "Comparison of Length of Hospital Stay for Community-Acquired Infections Due to Enteric Pathogens, Influenza Viruses and Multidrug-Resistant Bacteria: A Cross-Sectional Study in Hungary," IJERPH, MDPI, vol. 19(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:12:p:7036-:d:834400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.