IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i24p13364-d705868.html
   My bibliography  Save this article

Livelihoods, Technological Constraints, and Low-Carbon Agricultural Technology Preferences of Farmers: Analytical Frameworks of Technology Adoption and Farmer Livelihoods

Author

Listed:
  • Dandan Zhao

    (School of Business, Jingling Institute of Technology, Nanjing 211169, China
    School of Business, Nanjing University, Nanjing 210023, China)

  • Hong Zhou

    (Grain Research Center, Nanjing Agricultural University, Nanjing 210005, China)

Abstract

In the context of achieving carbon neutrality, it is scientifically important to quantitatively explore the relationships among livelihoods, technological property constraints, and the selection of low-carbon technologies by farmers to promote agricultural modernization and carbon neutrality in the agricultural sector of China. Based on the scientific classifications of farmer capital and low-carbon agricultural technologies, a farmer technology selection theory model considering capital constraints was developed in this study. Microcosmic survey data were collected from farmers in the Jiangsu province for empirical testing and analyses. A total of four low-carbon technologies related to fertilizer usage and three types of farmers’ livelihoods and their relationships were examined by using a logistic model. The results showed the existence of a significant coupling relationship between the intrinsic decision mechanism involved in selecting low-carbon agricultural technology and the properties of low-carbon agricultural technology for different types of farmers. Significant differences exist in the selection of different low-carbon technologies among large-scale farmers, mid-level part-time farmers, and low-level (generally small) part-time farmers. (1) When selecting technology, large-scale farmers are more inclined to accept capital-intensive, low-carbon technologies, such as new varieties, straw recycling, soil testing, and formulated fertilization. Mid-level part-time farmers are more inclined to accept capital intensive, labor saving, or low risk low-carbon agricultural technologies. In contrast, low-level part-time farmers are inclined to accept labor intensive technologies to reduce capital constraints and agricultural risks. (2) Large-scale farmers and low-level part-time farmers are influenced by household and plot characteristics, while mid-level part-time farmers are more influenced by plot characteristics. (3) Households with capital constraints created by differentiated livelihoods face challenges adopting capital-intensive low-carbon agricultural technologies, such as straw recycling, new varieties, soil testing, and formulated fertilization. However, farmers with stronger constraints in the areas of land and labor are more inclined to accept labor-saving technologies, such as soil testing and formulated fertilization technology. Moreover, farmers with stronger risk preferences tend to accept high-risk technologies, such as new technologies like straw recycling. The results of this study can provide a scientific basis for formulating carbon emission reduction policies and low-carbon technology policies for the agricultural sector.

Suggested Citation

  • Dandan Zhao & Hong Zhou, 2021. "Livelihoods, Technological Constraints, and Low-Carbon Agricultural Technology Preferences of Farmers: Analytical Frameworks of Technology Adoption and Farmer Livelihoods," IJERPH, MDPI, vol. 18(24), pages 1-19, December.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:24:p:13364-:d:705868
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/24/13364/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/24/13364/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianguo Li & Xinyue Xu & Lili Liu, 2021. "Attribution and causal mechanism of farmers’ willingness to prevent pollution from livestock and poultry breeding in coastal areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7193-7211, May.
    2. Victor Owusu & Awudu Abdulai, 2019. "Examining the economic impacts of integrated pest management among vegetable farmers in Southern Ghana," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 62(11), pages 1886-1907, September.
    3. Ding, Shijun & Meriluoto, Laura & Reed, W. Robert & Tao, Dayun & Wu, Haitao, 2011. "The impact of agricultural technology adoption on income inequality in rural China: Evidence from southern Yunnan Province," China Economic Review, Elsevier, vol. 22(3), pages 344-356, September.
    4. Jianguo Li & Wenhui Yang & Yi Wang & Qiang Li & Lili Liu & Zhongqi Zhang, 2018. "Carbon Footprint and Driving Forces of Saline Agriculture in Coastally Reclaimed Areas of Eastern China: A Survey of Four Staple Crops," Sustainability, MDPI, vol. 10(4), pages 1-16, March.
    5. Morey Burnham & Zhao Ma & Delan Zhu, 2015. "Erratum to: The human dimensions of water saving irrigation: lessons learned from Chinese smallholder farmers," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(2), pages 361-362, June.
    6. Barham, Bradford L. & Chavas, Jean-Paul & Fitz, Dylan & Salas, Vanessa Ríos & Schechter, Laura, 2014. "The roles of risk and ambiguity in technology adoption," Journal of Economic Behavior & Organization, Elsevier, vol. 97(C), pages 204-218.
    7. Esther Duflo & Michael Kremer & Jonathan Robinson, 2011. "Nudging Farmers to Use Fertilizer: Theory and Experimental Evidence from Kenya," American Economic Review, American Economic Association, vol. 101(6), pages 2350-2390, October.
    8. Lalani, Baqir & Dorward, Peter & Holloway, Garth & Wauters, Erwin, 2016. "Smallholder farmers' motivations for using Conservation Agriculture and the roles of yield, labour and soil fertility in decision making," Agricultural Systems, Elsevier, vol. 146(C), pages 80-90.
    9. Kleemann, Linda & Abdulai, Awudu, 2013. "Organic certification, agro-ecological practices and return on investment: Evidence from pineapple producers in Ghana," Ecological Economics, Elsevier, vol. 93(C), pages 330-341.
    10. Morey Burnham & Zhao Ma & Delan Zhu, 2015. "The human dimensions of water saving irrigation: lessons learned from Chinese smallholder farmers," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(2), pages 347-360, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xufeng Cui & Ting Cai & Wei Deng & Rui Zheng & Yuehua Jiang & Hongjie Bao, 2022. "Indicators for Evaluating High-Quality Agricultural Development: Empirical Study from Yangtze River Economic Belt, China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 164(3), pages 1101-1127, December.
    2. Linli Jiang & Yun Tian & Nan Chen & Yun Luo, 2023. "An empirical exploration into the determinants of rice farmers’ decisions to adopt low-carbon agricultural technologies in Hubei Province, China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(4), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erwin, Anna & Ma, Zhao & Popovici, Ruxandra & Salas O’Brien, Emma Patricia & Zanotti, Laura & Silva, Chelsea A. & Zeballos, Eliseo Zeballos & Bauchet, Jonathan & Calderón, Nelly Ramírez & Arce Larrea,, 2022. "Linking migration to community resilience in the receiving basin of a large-scale water transfer project," Land Use Policy, Elsevier, vol. 114(C).
    2. Meemken, Eva-Marie & Veettil, Prakashan Chellattan & Qaim, Matin, 2017. "Toward Improving the Design of Sustainability Standards—A Gendered Analysis of Farmers’ Preferences," World Development, Elsevier, vol. 99(C), pages 285-298.
    3. Yongqiang Zhang & Hao Sun & Maosheng Ge & Hang Zhao & Yifan Hu & Changyue Cui & Zhibin Wu, 2023. "Difference in Energy Input and Output in Agricultural Production under Surface Irrigation and Water-Saving Irrigation: A Case Study of Kiwi Fruit in Shaanxi," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    4. Rasmussen, Laura Vang, 2018. "Re-Defining Sahelian ‘Adaptive Agriculture’ when Implemented Locally: Beyond Techno-fix Solutions," World Development, Elsevier, vol. 108(C), pages 274-282.
    5. Ma, Zhao & Clarke, Mysha & Church, Sarah P., 2018. "Insights into individual and cooperative invasive plant management on family forestlands," Land Use Policy, Elsevier, vol. 75(C), pages 682-693.
    6. Zhao Ding & Awudu Abdulai, 2020. "An Analysis of the Factors Influencing Choice of Microcredit Sources and Impact of Participation on Household Income," Journal of International Development, John Wiley & Sons, Ltd., vol. 32(4), pages 505-525, May.
    7. Bell, Andrew R. & Ward, Patrick S. & Ashfaq, Muhammad & Davies, Stephen, 2017. "Can agricultural aspirations influence preferences for new technologies? Cropping systems and preferences for high-efficiency irrigation in Punjab, Pakistan," IFPRI discussion papers 1636, International Food Policy Research Institute (IFPRI).
    8. Qiuyan Wang & Qingjian Zhao, 2022. "Assessing Ecological Infrastructure Investments—A Case Study of Water Rights Trading in Lu’an City, Anhui Province, China," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    9. Ding Xiuling & Lu Qian & Li Lipeng & Apurbo Sarkar, 2023. "The Impact of Technical Training on Farmers Adopting Water-Saving Irrigation Technology: An Empirical Evidence from China," Agriculture, MDPI, vol. 13(5), pages 1-20, April.
    10. Mi, Qiao & Li, Xiandong & Li, Xianmei & Yu, Guoxin & Gao, Jianzhong, 2021. "Cotton farmers' adaptation to arid climates: Waiting times to adopt water-saving technology," Agricultural Water Management, Elsevier, vol. 244(C).
    11. Shukun Wang & Changquan Liu & Lei Han & Tingting Li & Guolei Yang & Taofeng Chen, 2022. "Corn Grain or Corn Silage: Effects of the Grain-to-Fodder Crop Conversion Program on Farmers’ Income in China," Agriculture, MDPI, vol. 12(7), pages 1-16, July.
    12. Burnham, Morey & Ma, Zhao, 2018. "Multi-Scalar Pathways to Smallholder Adaptation," World Development, Elsevier, vol. 108(C), pages 249-262.
    13. Yongfeng Tan & Apurbo Sarkar & Airin Rahman & Lu Qian & Waqar Hussain Memon & Zharkyn Magzhan, 2021. "Does External Shock Influence Farmer’s Adoption of Modern Irrigation Technology?—A Case of Gansu Province, China," Land, MDPI, vol. 10(8), pages 1-16, August.
    14. Parvathi, Priyanka & Waibel, Hermann, 2015. "Is Organic Agriculture and Fair Trade Certification a way out of Crisis? Evidence from Black Pepper Farmers in India," 55th Annual Conference, Giessen, Germany, September 23-25, 2015 209209, German Association of Agricultural Economists (GEWISOLA).
    15. Ke Liu & Zhenhong Qi & Li Tan & Caiyan Yang & Canwei Hu, 2023. "Mixed Use of Chemical Pesticides and Biopesticides among Rice–Crayfish Integrated System Farmers in China: A Multivariate Probit Approach," Agriculture, MDPI, vol. 13(8), pages 1-17, August.
    16. Peter Bergman, 2020. "Nudging Technology Use: Descriptive and Experimental Evidence from School Information Systems," Education Finance and Policy, MIT Press, vol. 15(4), pages 623-647, Fall.
    17. Liverpool-Tasie, Lenis Saweda, 2012. "Targeted Subsidies and Private Market Participation: An Assessment of Fertilizer Demand in Nigeria:," IFPRI discussion papers 1194, International Food Policy Research Institute (IFPRI).
    18. Teresa Molina Millán & Karen Macours, 2017. "Attrition in randomized control trials: Using tracking information to correct bias," FEUNL Working Paper Series novaf:wp1702, Universidade Nova de Lisboa, Faculdade de Economia.
    19. Pascaline Dupas & Sarah Green & Anthony Keats & Jonathan Robinson, 2014. "Challenges in Banking the Rural Poor: Evidence from Kenya's Western Province," NBER Chapters, in: African Successes, Volume III: Modernization and Development, pages 63-101, National Bureau of Economic Research, Inc.
    20. Awudu Abdulai, 2023. "Information acquisition and the adoption of improved crop varieties," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(4), pages 1049-1062, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:24:p:13364-:d:705868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.