IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i20p10748-d655380.html
   My bibliography  Save this article

The Effect of Urban Land-Use Change on Runoff Water Quality: A Case Study in Hangzhou City

Author

Listed:
  • Li Li

    (School of Public Affairs, Zhejiang University, Hangzhou 310058, China)

  • Qidi Yu

    (School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, UK)

  • Ling Gao

    (Wang Yanan Institute for Studies in Economics, Xiamen University, Xiamen 361005, China)

  • Bin Yu

    (Department of Economics, University of Essex, Colchester CO4 3SQ, UK)

  • Zhipeng Lu

    (School of Public Affairs, Zhejiang University, Hangzhou 310058, China)

Abstract

The main functions of this research are to guide the proportion of urban land that is used and the layout of the facilities on it, help understand the changes to surface runoff that are caused by land being used in urban development, and thus solve surface runoff pollution. Hangzhou City, China has been selected for the experiment, and the way in which its land is utilized as well as the grading of urban construction projects in the demonstration area are specifically analyzed. This study systematically distinguishes the definitions of impervious area based on the Sutherland equation and analyzes the impact of different impervious area subtypes on surface runoff water quality. Then, we compare the impact of impervious area subtypes with the impact of other land-use patterns on surface runoff water quality. This study shows the relationship between different land-use types and runoff water bodies: Land-use index can affect runoff water quality; Greening activities, impervious surface, and the water quality index are negatively correlated; the effective impervious area rate is positively correlated with the water quality index. The paper suggests that increasing the proportion of green spaces and permeable roads in build-up land reduces the effective impervious area (EIA) and thus controls land runoff pollution and improves runoff water quality.

Suggested Citation

  • Li Li & Qidi Yu & Ling Gao & Bin Yu & Zhipeng Lu, 2021. "The Effect of Urban Land-Use Change on Runoff Water Quality: A Case Study in Hangzhou City," IJERPH, MDPI, vol. 18(20), pages 1-12, October.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:20:p:10748-:d:655380
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/20/10748/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/20/10748/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brainwood, M. A. & Burgin, S. & Maheshwari, B., 2004. "Temporal variations in water quality of farm dams: impacts of land use and water sources," Agricultural Water Management, Elsevier, vol. 70(2), pages 151-175, November.
    2. Shiqiang Du & Peijun Shi & Anton Rompaey & Jiahong Wen, 2015. "Quantifying the impact of impervious surface location on flood peak discharge in urban areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1457-1471, April.
    3. Azam Haidary & Bahman Amiri & Jan Adamowski & Nicola Fohrer & Kaneyuki Nakane, 2013. "Assessing the Impacts of Four Land Use Types on the Water Quality of Wetlands in Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2217-2229, May.
    4. Ike Sari Astuti & Kamalakanta Sahoo & Adam Milewski & Deepak R. Mishra, 2019. "Impact of Land Use Land Cover (LULC) Change on Surface Runoff in an Increasingly Urbanized Tropical Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4087-4103, September.
    5. Angela Gorgoglione & Javier Gregorio & Agustín Ríos & Jimena Alonso & Christian Chreties & Mónica Fossati, 2020. "Influence of Land Use/Land Cover on Surface-Water Quality of Santa Lucía River, Uruguay," Sustainability, MDPI, vol. 12(11), pages 1-19, June.
    6. Jong Mun Lee & Minji Park & Bae Kyung Park & Jiyeon Choi & Jinsun Kim & Kyunghyun Kim & Yongseok Kim, 2021. "Evaluation of Water Circulation by Modeling: An Example of Nonpoint Source Management in the Yeongsan River Watershed," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    7. Daniel J. Phaneuf & V. Kerry Smith & Raymond B. Palmquist & Jaren C. Pope, 2008. "Integrating Property Value and Local Recreation Models to Value Ecosystem Services in Urban Watersheds," Land Economics, University of Wisconsin Press, vol. 84(3), pages 361-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinfeng Zeng & Zuwen Liu & Xinggen Liu & Linan Zhang & Jun Zhang & Yangsong Zeng, 2023. "The Spatiotemporal Variations and Potential Causes of Water Quality of Headwaters of Dongjiang River, Southeastern China," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    2. Scott Greeves, 2023. "Tracking Trash: Understanding Patterns of Debris Pollution in Knoxville’s Urban Streams," Sustainability, MDPI, vol. 15(24), pages 1-13, December.
    3. Yangfei Huang & Xiaomin Jiang & Yong Chen, 2023. "Analysis of the Spatial-Temporal Evolution of Urbanization Quality in Zhejiang Province, China," IJERPH, MDPI, vol. 20(5), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fridrich, Beata & Krčmar, Dejan & Dalmacija, Božo & Molnar, Jelena & Pešić, Vesna & Kragulj, Marijana & Varga, Nataša, 2014. "Impact of wastewater from pig farm lagoons on the quality of local groundwater," Agricultural Water Management, Elsevier, vol. 135(C), pages 40-53.
    2. Hackbart, Vivian C.S. & de Lima, Guilherme T.N.P. & dos Santos, Rozely F., 2017. "Theory and practice of water ecosystem services valuation: Where are we going?," Ecosystem Services, Elsevier, vol. 23(C), pages 218-227.
    3. Decoville, Antoine & Feltgen, Valérie, 2023. "Clarifying the EU objective of no net land take: A necessity to avoid the cure being worse than the disease," Land Use Policy, Elsevier, vol. 131(C).
    4. Melstrom, Richard & Lupi, Frank, 2012. "Using a Control Function to Resolve the Travel Cost Endogeneity Problem in Recreation Demand Models," MPRA Paper 48036, University Library of Munich, Germany, revised May 2013.
    5. H. Allen Klaiber & V. Kerry Smith, 2013. "Developing general equilibrium benefit analyses for social programs: an introduction and example," Chapters, in: Scott O. Farrow & Richard Zerbe, Jr. (ed.), Principles and Standards for Benefit–Cost Analysis, chapter 6, pages 194-246, Edward Elgar Publishing.
    6. Dorcas Idowu & Wendy Zhou, 2023. "Global Megacities and Frequent Floods: Correlation between Urban Expansion Patterns and Urban Flood Hazards," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    7. Afed U. Khan & Jiping Jiang & Ashish Sharma & Peng Wang & Jehanzeb Khan, 2017. "How Do Terrestrial Determinants Impact the Response of Water Quality to Climate Drivers?—An Elasticity Perspective on the Water–Land–Climate Nexus," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    8. Juan G. Loaiza & Jesús Gabriel Rangel-Peraza & Antonio Jesús Sanhouse-García & Sergio Alberto Monjardín-Armenta & Zuriel Dathan Mora-Félix & Yaneth A. Bustos-Terrones, 2021. "Assessment of Water Quality in A Tropical Reservoir in Mexico: Seasonal, Spatial and Multivariable Analysis," IJERPH, MDPI, vol. 18(14), pages 1-20, July.
    9. Yuncai Wang & Jiake Shen & Wentao Yan & Chundi Chen, 2019. "Effects of Landscape Development Intensity on River Water Quality in Urbanized Areas," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    10. Paweł Tomczyk & Mirosław Wiatkowski, 2021. "The Effects of Hydropower Plants on the Physicochemical Parameters of the Bystrzyca River in Poland," Energies, MDPI, vol. 14(8), pages 1-29, April.
    11. Mirzaei, Mohsen & Jafari, Ali & Gholamalifard, Mehdi & Azadi, Hossein & Shooshtari, Sharif Joorabian & Moghaddam, Saghi Movahhed & Gebrehiwot, Kindeya & Witlox, Frank, 2020. "Mitigating environmental risks: Modeling the interaction of water quality parameters and land use cover," Land Use Policy, Elsevier, vol. 95(C).
    12. Neuman, Amber D. & Belcher, Ken W., 2011. "The contribution of carbon-based payments to wetland conservation compensation on agricultural landscapes," Agricultural Systems, Elsevier, vol. 104(1), pages 75-81, January.
    13. Hanbing Liu & Guobao Luo & Longhui Wang & Yafeng Gong, 2018. "Strength Time–Varying and Freeze–Thaw Durability of Sustainable Pervious Concrete Pavement Material Containing Waste Fly Ash," Sustainability, MDPI, vol. 11(1), pages 1-13, December.
    14. Arunima Sarkar Basu & Francesco Pilla & Srikanta Sannigrahi & Rémi Gengembre & Antoine Guilland & Bidroha Basu, 2021. "Theoretical Framework to Assess Green Roof Performance in Mitigating Urban Flooding as a Potential Nature-Based Solution," Sustainability, MDPI, vol. 13(23), pages 1-34, November.
    15. Jong Mun Lee & Minji Park & Bae Kyung Park & Jiyeon Choi & Jinsun Kim & Kyunghyun Kim & Yongseok Kim, 2021. "Evaluation of Water Circulation by Modeling: An Example of Nonpoint Source Management in the Yeongsan River Watershed," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    16. Janne Artell & Anni Huhtala, 2017. "What Are the Benefits of the Water Framework Directive? Lessons Learned for Policy Design from Preference Revelation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(4), pages 847-873, December.
    17. Ankur Srivastava & Proloy Deb & Nikul Kumari, 2020. "Multi-Model Approach to Assess the Dynamics of Hydrologic Components in a Tropical Ecosystem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 327-341, January.
    18. Mário David Sequeira & Ana Castilho & Alexandre Oliveira Tavares & Pedro Dinis, 2022. "The Rural Fires of 2017 and Their Influences on Water Quality: An Assessment of Causes and Effects," IJERPH, MDPI, vol. 20(1), pages 1-12, December.
    19. Iman Fatehi & Bahman Amiri & Afshin Alizadeh & Jan Adamowski, 2015. "Modeling the Relationship between Catchment Attributes and In-stream Water Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5055-5072, November.
    20. Maestre-Valero, J.F. & Martínez-Alvarez, V., 2010. "Effects of drip irrigation systems on the recovery of dissolved oxygen from hypoxic water," Agricultural Water Management, Elsevier, vol. 97(11), pages 1806-1812, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:20:p:10748-:d:655380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.