IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i7p2217-2229.html
   My bibliography  Save this article

Assessing the Impacts of Four Land Use Types on the Water Quality of Wetlands in Japan

Author

Listed:
  • Azam Haidary
  • Bahman Amiri
  • Jan Adamowski
  • Nicola Fohrer
  • Kaneyuki Nakane

Abstract

This study examined how changes in the composition of land use can affect wetland water quality. Twenty-four wetlands located in Hiroshima prefecture in the western part of Japan were selected for this purpose. The water quality parameters that were explored include: pH, electrical conductivity, turbidity, dissolved oxygen, total dissolved solid, temperature and different forms of nitrogen. These important indicators of the water quality in the study area were measured from December 2005 to December 2006. The composition of land uses was determined for the catchments of the wetlands. They were then categorized into three classes, including non-disturbed, moderately-disturbed and highly-disturbed wetlands, based on the extent of urban area (as the most disruptive land use type within the catchment of the wetlands). The relationship between land use types and water quality parameters for the wetlands was statistically examined. The findings indicated that there were significant positive relationships between the proportion (%) of urban areas within catchments of the wetlands and EC (r = 0.67, p > 0.01), TDS (r = 0.69, p > 0.01), TN (r = 0.92, p > 0.01), DON (r = 0.6, p > 0.01), NH 4 + (r = 0.47, p > 0.05), NO 2 − (r = 0.50, p > 0.05), while negative relationships were observed between the proportion (%) of forest area in these wetlands and EC (r = −0.62, p > 0.01), TDS (r = −0.68, p > 0.01), TN (r = −0.68, p > 0.01), DON (r = -0.43, p > 0.05), and NH 4 + (r = −0.55, p > 0.01). Analysis of the variance also revealed significant differences within the wetland groups in terms of the annual mean of electrical conductivity, total dissolved solids, total nitrogen, nitrite, dissolved inorganic nitrogen and dissolved organic nitrogen in the study area. Moreover, the study also indicated that the forest area plays a significant role in withholding nutrient loads from the wetlands, and hence, it can act as a sink for surface/subsurface nutrient inputs flowing into such water bodies from the watersheds. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Azam Haidary & Bahman Amiri & Jan Adamowski & Nicola Fohrer & Kaneyuki Nakane, 2013. "Assessing the Impacts of Four Land Use Types on the Water Quality of Wetlands in Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2217-2229, May.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:7:p:2217-2229
    DOI: 10.1007/s11269-013-0284-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0284-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0284-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vassilios Tsihrintzis & Hector Fuentes & Rao Gadipudi, 1997. "GIS-Aided Modeling of Nonpoint Source Pollution Impacts on Surface and Ground Waters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 11(3), pages 207-218, June.
    2. Vassilios Tsihrintzis & Rizwan Hamid, 1997. "Modeling and Management of Urban Stormwater Runoff Quality: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 11(2), pages 136-164, April.
    3. E. Papastergiadou & A. Retalis & A. Apostolakis & Th. Georgiadis, 2008. "Environmental Monitoring of Spatio-temporal Changes Using Remote Sensing and GIS in a Mediterranean Wetland of Northern Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(5), pages 579-594, May.
    4. Bahman Amiri & Kaneyuki Nakane, 2009. "Modeling the Linkage Between River Water Quality and Landscape Metrics in the Chugoku District of Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 931-956, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mário David Sequeira & Ana Castilho & Alexandre Oliveira Tavares & Pedro Dinis, 2022. "The Rural Fires of 2017 and Their Influences on Water Quality: An Assessment of Causes and Effects," IJERPH, MDPI, vol. 20(1), pages 1-12, December.
    2. Iman Fatehi & Bahman Amiri & Afshin Alizadeh & Jan Adamowski, 2015. "Modeling the Relationship between Catchment Attributes and In-stream Water Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5055-5072, November.
    3. Li Li & Qidi Yu & Ling Gao & Bin Yu & Zhipeng Lu, 2021. "The Effect of Urban Land-Use Change on Runoff Water Quality: A Case Study in Hangzhou City," IJERPH, MDPI, vol. 18(20), pages 1-12, October.
    4. Wenjing Bo & Xiaoke Wang & Qianqian Zhang & Yi Xiao & Zhiyun Ouyang, 2017. "Influence of Land Use and Point Source Pollution on Water Quality in a Developed Region: A Case Study in Shunde, China," IJERPH, MDPI, vol. 15(1), pages 1-9, December.
    5. Jeong, Hanseok & Adamowski, Jan, 2016. "A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale," Agricultural Water Management, Elsevier, vol. 171(C), pages 89-107.
    6. Shirin Karimi & Bahman Jabbarian Amiri & Arash Malekian, 2019. "Similarity Metrics-Based Uncertainty Analysis of River Water Quality Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1927-1945, April.
    7. Liang Pei & Chunhui Wang & Yiping Zuo & Xiaojie Liu & Yanyan Chi, 2022. "Impacts of Land Use on Surface Water Quality Using Self-Organizing Map in Middle Region of the Yellow River Basin, China," IJERPH, MDPI, vol. 19(17), pages 1-14, September.
    8. Mirzaei, Mohsen & Jafari, Ali & Gholamalifard, Mehdi & Azadi, Hossein & Shooshtari, Sharif Joorabian & Moghaddam, Saghi Movahhed & Gebrehiwot, Kindeya & Witlox, Frank, 2020. "Mitigating environmental risks: Modeling the interaction of water quality parameters and land use cover," Land Use Policy, Elsevier, vol. 95(C).
    9. Mehdi Aalipour & Naicheng Wu & Nicola Fohrer & Yusef Kianpoor Kalkhajeh & Bahman Jabbarian Amiri, 2023. "Examining the Influence of Landscape Patch Shapes on River Water Quality," Land, MDPI, vol. 12(5), pages 1-15, May.
    10. Yu Song & Xiaodong Song & Guofan Shao, 2020. "Response of Water Quality to Landscape Patterns in an Urbanized Watershed in Hangzhou, China," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
    11. Love Kumar & Ramna Kumari & Avinash Kumar & Imran Aziz Tunio & Claudio Sassanelli, 2023. "Water Quality Assessment and Monitoring in Pakistan: A Comprehensive Review," Sustainability, MDPI, vol. 15(7), pages 1-38, April.
    12. Yuncai Wang & Jiake Shen & Wentao Yan & Chundi Chen, 2019. "Effects of Landscape Development Intensity on River Water Quality in Urbanized Areas," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    13. Ge Zhang & Subhrajit Guhathakurta & Susannah Lee & Amy Moore & Lijiao Yan, 2014. "Grid-Based Land-Use Composition and Configuration Optimization for Watershed Stormwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2867-2883, August.
    14. Afed U. Khan & Jiping Jiang & Ashish Sharma & Peng Wang & Jehanzeb Khan, 2017. "How Do Terrestrial Determinants Impact the Response of Water Quality to Climate Drivers?—An Elasticity Perspective on the Water–Land–Climate Nexus," Sustainability, MDPI, vol. 9(11), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hackbart, Vivian C.S. & de Lima, Guilherme T.N.P. & dos Santos, Rozely F., 2017. "Theory and practice of water ecosystem services valuation: Where are we going?," Ecosystem Services, Elsevier, vol. 23(C), pages 218-227.
    2. Sang-Soo Han & Zhi Chen & Fa-Yi Zhou & Xiu-Qing Lu, 2014. "Assessment of Suspended Solid Removal in a Surface Flow Constructed Wetland Using a Three-Dimensional Numerical Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3111-3125, August.
    3. Giorgos Papadavid & Diofantos Hadjimitsis & Leonidas Toulios & Silas Michaelides, 2013. "A Modified SEBAL Modeling Approach for Estimating Crop Evapotranspiration in Semi-arid Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3493-3506, July.
    4. S. Tang & W. Luo & Z. Jia & W. Liu & S. Li & Y. Wu, 2016. "Evaluating Retention Capacity of Infiltration Rain Gardens and Their Potential Effect on Urban Stormwater Management in the Sub-Humid Loess Region of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 983-1000, February.
    5. Vassilios A. Tsihrintzis, 2017. "The use of Vertical Flow Constructed Wetlands in Wastewater Treatment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3245-3270, August.
    6. Chen Lin & Ronghua Ma & Zhihu Su & Qing Zhu, 2015. "Detection of Critical LUCC Indices and Sensitive Watershed Regions Related to Lake Algal Blooms: A Case Study of Taihu Lake," IJERPH, MDPI, vol. 12(2), pages 1-20, January.
    7. Qiuju Wu & Renyi Yang & Zisheng Yang, 2022. "A Study on the Rationality of Land Use Change in the Dianchi Basin during the Last 40 Years under the Background of Lake Revolution," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    8. Vassilios Tsihrintzis & Hector Fuentes & Rao Gadipudi, 1997. "GIS-Aided Modeling of Nonpoint Source Pollution Impacts on Surface and Ground Waters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 11(3), pages 207-218, June.
    9. Mirzaei, Mohsen & Jafari, Ali & Gholamalifard, Mehdi & Azadi, Hossein & Shooshtari, Sharif Joorabian & Moghaddam, Saghi Movahhed & Gebrehiwot, Kindeya & Witlox, Frank, 2020. "Mitigating environmental risks: Modeling the interaction of water quality parameters and land use cover," Land Use Policy, Elsevier, vol. 95(C).
    10. An Liu & Dunzhu Li & Liang Liu & Yuntao Guan, 2014. "Understanding the Role of Urban Road Surface Characteristics in influencing Stormwater Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5217-5229, November.
    11. Alexandros I. Stefanakis, 2019. "The Role of Constructed Wetlands as Green Infrastructure for Sustainable Urban Water Management," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    12. V. M. Jayasooriya & A. W. M. Ng & S. Muthukumaran & B. J. C. Perera, 2016. "Optimal Sizing of Green Infrastructure Treatment Trains for Stormwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5407-5420, November.
    13. Fei Li & Xu-Feng Yan & Huan-Feng Duan, 2019. "Sustainable Design of Urban Stormwater Drainage Systems by Implementing Detention Tank and LID Measures for Flooding Risk Control and Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3271-3288, July.
    14. Chen Lin & Ronghua Ma & Bin He, 2015. "Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication—A Case Study in the Taihu Lake Basin (China)," IJERPH, MDPI, vol. 13(1), pages 1-14, December.
    15. Vassilios Tsihrintzis & Clara Sidan, 1998. "Modeling Urban Stormwater Runoff Processes Using the Santa Barbara Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 12(2), pages 139-166, April.
    16. Zhigao Wu & Kangning Xiong & Dayun Zhu & Jie Xiao, 2022. "Revelation of Coupled Ecosystem Quality and Landscape Patterns for Agroforestry Ecosystem Services Sustainability Improvement in the Karst Desertification Control," Agriculture, MDPI, vol. 13(1), pages 1-27, December.
    17. Iman Fatehi & Bahman Amiri & Afshin Alizadeh & Jan Adamowski, 2015. "Modeling the Relationship between Catchment Attributes and In-stream Water Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5055-5072, November.
    18. Frederick Asare & Lobina G. Palamuleni & Tabukeli Ruhiiga, 2018. "Land Use Change Assessment and Water Quality of Ephemeral Ponds for Irrigation in the North West Province, South Africa," IJERPH, MDPI, vol. 15(6), pages 1-16, June.
    19. Tolera Megersa & Taffa Tullu, 2018. "Effects of Land Use/Cover Type On Surface Water Quality: In The Case Of Chancho and Sorga Watershed, East Wollega Zone, Oromia, Ethiopia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 12(4), pages 94-103, June.
    20. Zachary Christman & Mahbubur Meenar & Lynn Mandarano & Kyle Hearing, 2018. "Prioritizing Suitable Locations for Green Stormwater Infrastructure Based on Social Factors in Philadelphia," Land, MDPI, vol. 7(4), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:7:p:2217-2229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.