IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v76y2015i3p1457-1471.html
   My bibliography  Save this article

Quantifying the impact of impervious surface location on flood peak discharge in urban areas

Author

Listed:
  • Shiqiang Du
  • Peijun Shi
  • Anton Rompaey
  • Jiahong Wen

Abstract

To date, limited attention has been paid to the role of impervious surface (IS) location in influencing flood processes. However, this topic is of tremendous significance for developing guidelines for urban planning and flood management. This study uses the Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) to investigate the impact of land-use change on flood processes and proposes a new index to quantify the impact of IS location on basin peak discharge. The results indicate that rapid urban expansion in the Longhua Basin, China, has increased peak discharge and flood volume by 140 and 162 % over the past 30 years, respectively. The new index, named the Impervious Surface Impact Index, describes the spatially varying effects of IS increase in individual sub-basins on a basin’s peak discharge. For the Longhua Basin, the index varies from 0.43 in downstream sub-basins to 5.91 in upstream sub-basins. An increase in upstream IS increases peak discharge nearly 14 times more than the same increase in downstream IS. Accordingly, the location of newly created IS can influence flood processes significantly. These findings can help to find suitable locations for urban development while mitigating the impact of land development on flood risks. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Shiqiang Du & Peijun Shi & Anton Rompaey & Jiahong Wen, 2015. "Quantifying the impact of impervious surface location on flood peak discharge in urban areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1457-1471, April.
  • Handle: RePEc:spr:nathaz:v:76:y:2015:i:3:p:1457-1471
    DOI: 10.1007/s11069-014-1463-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1463-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1463-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    2. Karen C Seto & Michail Fragkias & Burak Güneralp & Michael K Reilly, 2011. "A Meta-Analysis of Global Urban Land Expansion," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-9, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Veerkamp, C.J. & Loreti, M. & Benavidez, R. & Jackson, B & Schipper, A.M., 2023. "Comparing three spatial modeling tools for assessing urban ecosystem services," Ecosystem Services, Elsevier, vol. 59(C).
    2. Yi Chen & Tao Liu & Ruishan Chen & Mengke Zhao, 2020. "Influence of the Built Environment on Community Flood Resilience: Evidence from Nanjing City, China," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    3. Hanbing Liu & Guobao Luo & Longhui Wang & Yafeng Gong, 2018. "Strength Time–Varying and Freeze–Thaw Durability of Sustainable Pervious Concrete Pavement Material Containing Waste Fly Ash," Sustainability, MDPI, vol. 11(1), pages 1-13, December.
    4. Geraldo Moura Ramos Filho & Victor Hugo Rabelo Coelho & Emerson da Silva Freitas & Yunqing Xuan & Cristiano das Neves Almeida, 2021. "An improved rainfall-threshold approach for robust prediction and warning of flood and flash flood hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2409-2429, February.
    5. Arunima Sarkar Basu & Francesco Pilla & Srikanta Sannigrahi & Rémi Gengembre & Antoine Guilland & Bidroha Basu, 2021. "Theoretical Framework to Assess Green Roof Performance in Mitigating Urban Flooding as a Potential Nature-Based Solution," Sustainability, MDPI, vol. 13(23), pages 1-34, November.
    6. Decoville, Antoine & Feltgen, Valérie, 2023. "Clarifying the EU objective of no net land take: A necessity to avoid the cure being worse than the disease," Land Use Policy, Elsevier, vol. 131(C).
    7. Jong Mun Lee & Minji Park & Bae Kyung Park & Jiyeon Choi & Jinsun Kim & Kyunghyun Kim & Yongseok Kim, 2021. "Evaluation of Water Circulation by Modeling: An Example of Nonpoint Source Management in the Yeongsan River Watershed," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    8. Li Li & Qidi Yu & Ling Gao & Bin Yu & Zhipeng Lu, 2021. "The Effect of Urban Land-Use Change on Runoff Water Quality: A Case Study in Hangzhou City," IJERPH, MDPI, vol. 18(20), pages 1-12, October.
    9. Dorcas Idowu & Wendy Zhou, 2023. "Global Megacities and Frequent Floods: Correlation between Urban Expansion Patterns and Urban Flood Hazards," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    10. Aazim Yousuf & Shakil Ahmad Romshoo, 2022. "Impact of Land System Changes and Extreme Precipitation on Peak Flood Discharge and Sediment Yield in the Upper Jhelum Basin, Kashmir Himalaya," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    11. Cavalieri, Francesco & Franchin, Paolo & Giovinazzi, Sonia, 2023. "Multi-hazard assessment of increased flooding hazard due to earthquake-induced damage to the natural drainage system," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Hui Zhang & Jiong Cheng & Zhifeng Wu & Cheng Li & Jun Qin & Tong Liu, 2018. "Effects of Impervious Surface on the Spatial Distribution of Urban Waterlogging Risk Spots at Multiple Scales in Guangzhou, South China," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    13. Fei Teng & Wenrui Huang & Isaac Ginis, 2018. "Hydrological modeling of storm runoff and snowmelt in Taunton River Basin by applications of HEC-HMS and PRMS models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 179-199, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongyan Cai & Xinliang Xu, 2017. "Impacts of Built-Up Area Expansion in 2D and 3D on Regional Surface Temperature," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    2. Mansour, Shawky & Al-Belushi, Mohammed & Al-Awadhi, Talal, 2020. "Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques," Land Use Policy, Elsevier, vol. 91(C).
    3. Faisal Mumtaz & Yu Tao & Waqar Ahmed Bashir & Mariam Kareem & Wang Gengke & Lingling Li & Barjeece Bashir, 2020. "Transition Of Lulc And Future Predictions By Using Ca-Markov Chain Model (A Case Study Of Metropolitan City Lahore, Pakistan)," Earth Sciences Malaysia (ESMY), Zibeline International Publishing, vol. 4(2), pages 146-151, October.
    4. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    5. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    7. Isaac Sarfo & Bi Shuoben & Li Beibei & Solomon Obiri Yeboah Amankwah & Emmanuel Yeboah & John Ernest Koku & Edward Kweku Nunoo & Clement Kwang, 2022. "Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9851-9883, August.
    8. Ke Huang & Martin Dallimer & Lindsay C. Stringer & Anlu Zhang & Ting Zhang, 2021. "Does Economic Agglomeration Lead to Efficient Rural to Urban Land Conversion? An Examination of China’s Metropolitan Area Development Strategy," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    9. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    10. Camacho, Carmen & Pérez-Barahona, Agustín, 2015. "Land use dynamics and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 96-118.
    11. Lina Eklund & Abdulhakim Abdi & Mine Islar, 2017. "From Producers to Consumers: The Challenges and Opportunities of Agricultural Development in Iraqi Kurdistan," Land, MDPI, vol. 6(2), pages 1-14, June.
    12. Xiaolong Jin & Penghui Jiang & Haoyang Du & Dengshuai Chen & Manchun Li, 2021. "Response of local temperature variation to land cover and land use intensity changes in China over the last 30 years," Climatic Change, Springer, vol. 164(3), pages 1-20, February.
    13. Broitman, Dani & Ben-Haim, Yakov, 2022. "Forecasting residential sprawl under uncertainty: An info-gap analysis," Land Use Policy, Elsevier, vol. 120(C).
    14. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    15. Kai Jin & Fei Wang & Deliang Chen & Qiao Jiao & Lei Xia & Luuk Fleskens & Xingmin Mu, 2015. "Assessment of urban effect on observed warming trends during 1955–2012 over China: a case of 45 cities," Climatic Change, Springer, vol. 132(4), pages 631-643, October.
    16. Xu, Gang & Xu, Zhibang & Gu, Yanyan & Lei, Weiqian & Pan, Yupiao & Liu, Jie & Jiao, Limin, 2020. "Scaling laws in intra-urban systems and over time at the district level in Shanghai, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    17. Korthals Altes, Willem K., 2019. "Planning initiative: Promoting development by the use of options in Amsterdam," Land Use Policy, Elsevier, vol. 83(C), pages 13-21.
    18. Caiyao Xu & Lijie Pu & Ming Zhu & Jianguo Li & Xinjian Chen & Xiaohan Wang & Xuefeng Xie, 2016. "Ecological Security and Ecosystem Services in Response to Land Use Change in the Coastal Area of Jiangsu, China," Sustainability, MDPI, vol. 8(8), pages 1-24, August.
    19. Jinling Quan, 2019. "Multi-Temporal Effects of Urban Forms and Functions on Urban Heat Islands Based on Local Climate Zone Classification," IJERPH, MDPI, vol. 16(12), pages 1-35, June.
    20. Riccardo Scalenghe & Ottorino-Luca Pantani, 2019. "Connecting Existing Cemeteries Saving Good Soils (for Livings)," Sustainability, MDPI, vol. 12(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:76:y:2015:i:3:p:1457-1471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.