IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i11p5537-d559767.html
   My bibliography  Save this article

Monetary Health Co-Benefits and GHG Emissions Reduction Benefits: Contribution from Private On-the-Road Transport

Author

Listed:
  • Je-Liang Liou

    (The Center for Green Economy, Chung-Hua Institution for Economic Research, Taipei 10617, Taiwan)

  • Pei-Ing Wu

    (Department of Agricultural Economics, National Taiwan University, Taipei 10617, Taiwan)

Abstract

This is the first study to provide a systematic monetary benefit matrix, including greenhouse gas (GHG) emissions reduction benefits and air pollution reduction health co-benefits, for a change in on-the-road transport to low-carbon types. The benefit transfer method is employed to estimate the social cost of carbon and the health co-benefits via impact pathway analysis in Taiwan. Specifically, the total emissions reduction benefits from changing all internal combustion vehicles to either hybrid electric vehicles, plug-in hybrid electric vehicles, or electric vehicles would generate an average of USD 760 million from GHG emissions reduction and USD 2091 million from health co-benefits based on air pollution reduction, for a total benefit of USD 2851 million annually. For a change from combustion scooters to light- or heavy-duty electric scooters, the average GHG emissions reduction benefits would be USD 96.02 million, and the health co-benefits from air pollution reduction would be USD 1008.83 million, for total benefits of USD 1104.85 million annually.

Suggested Citation

  • Je-Liang Liou & Pei-Ing Wu, 2021. "Monetary Health Co-Benefits and GHG Emissions Reduction Benefits: Contribution from Private On-the-Road Transport," IJERPH, MDPI, vol. 18(11), pages 1-19, May.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:11:p:5537-:d:559767
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/11/5537/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/11/5537/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shukla, Priyadarshi R. & Chaturvedi, Vaibhav, 2012. "Low carbon and clean energy scenarios for India: Analysis of targets approach," Energy Economics, Elsevier, vol. 34(S3), pages 487-495.
    2. Mikael Karlsson & Eva Alfredsson & Nils Westling, 2020. "Climate policy co-benefits: a review," Climate Policy, Taylor & Francis Journals, vol. 20(3), pages 292-316, March.
    3. Lu Bai & Jianzhou Wang & Xuejiao Ma & Haiyan Lu, 2018. "Air Pollution Forecasts: An Overview," IJERPH, MDPI, vol. 15(4), pages 1-44, April.
    4. Je-Liang Liou, 2019. "Effect of Income Heterogeneity on Valuation of Mortality Risk in Taiwan: An Application of Unconditional Quantile Regression Method," IJERPH, MDPI, vol. 16(9), pages 1-15, May.
    5. Hope, Chris & Anderson, John & Wenman, Paul, 1993. "Policy analysis of the greenhouse effect : An application of the PAGE model," Energy Policy, Elsevier, vol. 21(3), pages 327-338, March.
    6. Ian Parry & Chandara Veung & Dirk Heine, 2015. "How Much Carbon Pricing Is In Countries’ Own Interests? The Critical Role Of Co-Benefits," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 1-26, November.
    7. Mayrhofer, Jan P. & Gupta, Joyeeta, 2016. "The science and politics of co-benefits in climate policy," Environmental Science & Policy, Elsevier, vol. 57(C), pages 22-30.
    8. Martin Spitzer & Jonas Schlund & Elpiniki Apostolaki-Iosifidou & Marco Pruckner, 2019. "Optimized Integration of Electric Vehicles in Low Voltage Distribution Grids," Energies, MDPI, vol. 12(21), pages 1-19, October.
    9. Matthew J. Kotchen, 2018. "Which Social Cost of Carbon? A Theoretical Perspective," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(3), pages 673-694.
    10. Vivian G. M. Quam & Joacim Rocklöv & Mikkel B. M. Quam & Rebekah A. I. Lucas, 2017. "Assessing Greenhouse Gas Emissions and Health Co-Benefits: A Structured Review of Lifestyle-Related Climate Change Mitigation Strategies," IJERPH, MDPI, vol. 14(5), pages 1-19, April.
    11. William D. Nordhaus, 1992. "The 'DICE' Model: Background and Structure of a Dynamic Integrated Climate-Economy Model of the Economics of Global Warming," Cowles Foundation Discussion Papers 1009, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei-Ing Wu & Je-Liang Liou & Ta-Ken Huang, 2022. "Evaluation of Benefits and Health Co-Benefits of GHG Reduction for Taiwan’s Industrial Sector under a Carbon Charge in 2023–2030," IJERPH, MDPI, vol. 19(22), pages 1-24, November.
    2. Martin Zapf & Hermann Pengg & Christian Weindl, 2019. "How to Comply with the Paris Agreement Temperature Goal: Global Carbon Pricing According to Carbon Budgets," Energies, MDPI, vol. 12(15), pages 1-20, August.
    3. Changxin Liu & Hailing Zhang & Zheng Wang, 2019. "Study on the Functional Improvement of Economic Damage Assessment for the Integrated Assessment Model," Sustainability, MDPI, vol. 11(5), pages 1-18, February.
    4. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    5. Liu, Weifeng & McKibbin, Warwick J. & Morris, Adele C. & Wilcoxen, Peter J., 2020. "Global economic and environmental outcomes of the Paris Agreement," Energy Economics, Elsevier, vol. 90(C).
    6. Wei, Xinyang & Tong, Qing & Magill, Iain & Vithayasrichareon, Peerapat & Betz, Regina, 2020. "Evaluation of potential co-benefits of air pollution control and climate mitigation policies for China's electricity sector," Energy Economics, Elsevier, vol. 92(C).
    7. Parson, Edward A, 1995. "Integrated assessment and environmental policy making : In pursuit of usefulness," Energy Policy, Elsevier, vol. 23(4-5), pages 463-475.
    8. Inhwan Ko & Aseem Prakash, 2022. "Signaling climate resilience to municipal bond markets: does membership in adaptation-focused voluntary clubs affect bond rating?," Climatic Change, Springer, vol. 171(1), pages 1-19, March.
    9. Plambeck, Erica L. & Hope, Chris & Anderson, John, 1997. "The model: Integrating the science and economics of global warming," Energy Economics, Elsevier, vol. 19(1), pages 77-101, March.
    10. Uji, Azusa & Song, Jaehyun & Dolšak, Nives & Prakash, Aseem, 2024. "Willingness to incur private costs for climate adaptation? Public support for undergrounding electricity transmission lines in California," Energy Policy, Elsevier, vol. 191(C).
    11. Pycroft, Jonathan & Vergano, Lucia & Hope, Chris & Paci, Daniele & Ciscar, Juan Carlos, 2011. "A tale of tails: Uncertainty and the social cost of carbon dioxide," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 5, pages 1-29.
    12. Christian Schoder & Remzi Baris Tercioglu, 2024. "A climate-fiscal policy mix to achieve Türkiye’s net-zero ambition under feasibility constraints," European Journal of Economics and Economic Policies: Intervention, Edward Elgar Publishing, vol. 21(2), pages 331-359, April.
    13. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Post-Print hal-02127724, HAL.
    14. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    15. Mbéa Bell & Sylvain Dessy, 2017. "Market Power and Instrument Choice in Climate Policy," Cahiers de recherche 1704, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
    16. Liu, Guangqiang & Zeng, Qing & Lei, Juan, 2022. "Dynamic risks from climate policy uncertainty: A case study for the natural gas market," Resources Policy, Elsevier, vol. 79(C).
    17. Pindyck, Robert S., 2019. "The social cost of carbon revisited," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 140-160.
    18. Hongbo Duan & Gupeng Zhang & Shouyang Wang & Ying Fan, 2018. "Balancing China’s climate damage risk against emission control costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 387-403, March.
    19. Chih‐Hsuan Wang & Chia‐Rong Chang, 2023. "Forecasting air quality index considering socioeconomic indicators and meteorological factors: A data granularity perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1261-1274, August.
    20. Eric Jondeau & Gregory Levieuge & Jean-Guillaume Sahuc & Gauthier Vermandel, 2022. "Environmental Subsidies to Mitigate Transition Risk," Swiss Finance Institute Research Paper Series 22-45, Swiss Finance Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:11:p:5537-:d:559767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.