IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i24p9289-d460762.html
   My bibliography  Save this article

Multi-Objective Optimal Allocation of Water Resources Based on the NSGA-2 Algorithm While Considering Intergenerational Equity: A Case Study of the Middle and Upper Reaches of Huaihe River Basin, China

Author

Listed:
  • Jitao Zhang

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

  • Zengchuan Dong

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

  • Tian Chen

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

Abstract

With the rapid development of society and the economy, the demand for water resources is increasing. This, combined with the increasing competition for water resources between current and future generations, hinders the sustainable development of society. To alleviate prominent water resources problems, achieve sustainable utilization of water resources and the sustainable development of society and economy, a multi-objective optimal water resources allocation model is proposed, in which different water sources and different water departments are considered to achieve the maximum social and economic benefits of the study area on the premise of water resources sustainability. To meet the needs of future generations, the discount value is introduced to measure intergenerational equity. A case study from seven cities in the upper and middle reaches of the Huaihe River Basin is given to verify the practicality and viability of the model. The non-dominated sorting Genetic Algorithms-2(NSGA-2) was used to find optimal water resources allocation schemes in 2020 and 2050 under the condition of a hydrological drought year (inflow guarantee rate p = 75%). Compared with previous models, the intergenerational equity model considers the sustainability of water resources, has higher social and economic benefits, and ensures the fair distribution of water resources among generations. According to the results, under balanced weight, the water shortage ratio of the seven cities will decrease from 5.24% in 2050 to 1.58% in 2020, and the economic benefit will increase from 79.46(10 10 CNY) to 168.3(10 10 CNY), respectively. In addition, the discount value of economic benefit in 2050 is 80.23(10 10 CNY), which is still higher than that in 2020. This shows that the water resource allocation scheme can eliminate the disparity between supply and demand for water resources and achieve intergenerational equity. Therefore, the intergenerational equity model can alleviate the contradiction of water resources and realize intergenerational equity.

Suggested Citation

  • Jitao Zhang & Zengchuan Dong & Tian Chen, 2020. "Multi-Objective Optimal Allocation of Water Resources Based on the NSGA-2 Algorithm While Considering Intergenerational Equity: A Case Study of the Middle and Upper Reaches of Huaihe River Basin, Chin," IJERPH, MDPI, vol. 17(24), pages 1-18, December.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:24:p:9289-:d:460762
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/24/9289/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/24/9289/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaona Li & Xiaosheng Wang & Haiying Guo & Weimin Ma, 2020. "Multi-Water Resources Optimal Allocation Based on Multi-Objective Uncertain Chance-Constrained Programming Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4881-4899, December.
    2. Winter-Nelson, Alex, 1996. "Discount rates, natural resources, and the measurement of aggregate economic growth in Africa," Ecological Economics, Elsevier, vol. 17(1), pages 21-32, April.
    3. Fang Li & Feng-ping Wu & Liu-xin Chen & Yue Zhao & Xiang-nan Chen & Zhi-ying Shao, 2020. "Fair and Reasonable Allocation of Trans-Boundary Water Resources Based on an Asymmetric Nash Negotiation Model from the Satisfaction Perspective: A Case Study for the Lancang–Mekong River Bain," IJERPH, MDPI, vol. 17(20), pages 1-20, October.
    4. M. Habibi Davijani & M. E. Banihabib & A. Nadjafzadeh Anvar & S. R. Hashemi, 2016. "Multi-Objective Optimization Model for the Allocation of Water Resources in Arid Regions Based on the Maximization of Socioeconomic Efficiency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 927-946, February.
    5. Pope, C. III & Perry, Greg, 1989. "Individual versus social discount rates in allocating depletable natural resources over time," Economics Letters, Elsevier, vol. 29(3), pages 257-264.
    6. Dennis Collentine, 2006. "Water Resource Economics: The Analysis of Scarcity, Policies and Projects," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 33(3), pages 437-439, September.
    7. Ashkan Shokri & Omid Bozorg Haddad & Miguel Mariño, 2014. "Multi-Objective Quantity–Quality Reservoir Operation in Sudden Pollution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 567-586, January.
    8. Yu Qiu & Yuan Liu & Yang Liu & Yingzi Chen & Yu Li, 2019. "An Interval Two-Stage Stochastic Programming Model for Flood Resources Allocation under Ecological Benefits as a Constraint Combined with Ecological Compensation Concept," IJERPH, MDPI, vol. 16(6), pages 1-18, March.
    9. Farzin, Y Hossein, 1984. "The Effect of the Discount Rate on Depletion of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 92(5), pages 841-851, October.
    10. Graciela Chichilnisky, 1996. "An axiomatic approach to sustainable development," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 13(2), pages 231-257, April.
    11. Bithas, Kostas, 2008. "The sustainable residential water use: Sustainability, efficiency and social equity. The European experience," Ecological Economics, Elsevier, vol. 68(1-2), pages 221-229, December.
    12. Alberto Garrido, 2000. "A mathematical programming model applied to the study of water markets within the Spanish agricultural sector," Annals of Operations Research, Springer, vol. 94(1), pages 105-123, January.
    13. Hyung-Il Eum & Slobodan Simonovic, 2010. "Integrated Reservoir Management System for Adaptation to Climate Change: The Nakdong River Basin in Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3397-3417, October.
    14. Shangming Jiang & Shaowei Ning & Xiuqing Cao & Juliang Jin & Fan Song & Xianjiang Yuan & Lei Zhang & Xiaoyan Xu & Parmeshwar Udmale, 2019. "Optimal Water Resources Regulation for the Pond Irrigation System Based on Simulation—A Case Study in Jiang-Huai Hilly Regions, China," IJERPH, MDPI, vol. 16(15), pages 1-18, July.
    15. Junfei Chen & Cong Yu & Miao Cai & Huimin Wang & Pei Zhou, 2020. "Multi-Objective Optimal Allocation of Urban Water Resources While Considering Conflict Resolution Based on the PSO Algorithm: A Case Study of Kunming, China," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    16. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xike Guan & Zengchuan Dong & Yun Luo & Dunyu Zhong, 2021. "Multi-Objective Optimal Allocation of River Basin Water Resources under Full Probability Scenarios Considering Wet–Dry Encounters: A Case Study of Yellow River Basin," IJERPH, MDPI, vol. 18(21), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meraj Sohrabi & Zeynab Banoo Ahani Amineh & Mohammad Hossein Niksokhan & Hossein Zanjanian, 2023. "A framework for optimal water allocation considering water value, strategic management and conflict resolution," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1582-1613, February.
    2. Amir Hatamkhani & Ali Moridi, 2021. "Optimal Development of Agricultural Sectors in the Basin Based on Economic Efficiency and Social Equality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 917-932, February.
    3. Xiaojing Shen & Xu Wu & Xinmin Xie & Chuanjiang Wei & Liqin Li & Jingjing Zhang, 2021. "Synergetic Theory-Based Water Resource Allocation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2053-2078, May.
    4. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Hu, Zhineng & Chen, Yazhen & Yao, Liming & Wei, Changting & Li, Chaozhi, 2016. "Optimal allocation of regional water resources: From a perspective of equity–efficiency tradeoff," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 102-113.
    6. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    7. Frédéric Gannon & Florence Legros & Vincent Touzé, 2020. "Sustainability of pension schemes. Building a smooth automatic balance mechanism with an application to the us social security," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(6), pages 377-401.
    8. Cairns, Robert D. & Del Campo, Stellio & Martinet, Vincent, 2019. "Sustainability of an economy relying on two reproducible assets," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 145-160.
    9. Cairns, Robert D. & Martinet, Vincent, 2021. "Growth and long-run sustainability," Environment and Development Economics, Cambridge University Press, vol. 26(4), pages 381-402, August.
    10. Dam, My & Ha-Huy, Thai & Le Van, Cuong & Nguyen, Thi Tuyet Mai, 2020. "Economic dynamics with renewable resources and pollution," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 14-26.
    11. Toman, Michael & Pezzey, John C., 2002. "The Economics of Sustainability: A Review of Journal Articles," RFF Working Paper Series dp-02-03, Resources for the Future.
    12. Wu, Jiansong & Zhang, Linlin & Bai, Yiping & Reniers, Genserik, 2022. "A safety investment optimization model for power grid enterprises based on System Dynamics and Bayesian network theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    13. Mardones, Cristian & del Rio, Ricardo, 2019. "Correction of Chilean GDP for natural capital depreciation and environmental degradation caused by copper mining," Resources Policy, Elsevier, vol. 60(C), pages 143-152.
    14. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    15. Charles Figuières & Mabel Tidball, 2016. "Sustainable Exploitation of a Natural Resource: A Satisfying Use of Chichilnisky’s Criterion," Studies in Economic Theory, in: Graciela Chichilnisky & Armon Rezai (ed.), The Economics of the Global Environment, pages 207-229, Springer.
    16. Mingjing Guo & Ziyu Jiang & Yan Bu & Jinhua Cheng, 2019. "Supporting Sustainable Development of Water Resources: A Social Welfare Maximization Game Model," IJERPH, MDPI, vol. 16(16), pages 1-15, August.
    17. Hansen, Anders Chr., 2006. "Do declining discount rates lead to time inconsistent economic advice?," Ecological Economics, Elsevier, vol. 60(1), pages 138-144, November.
    18. W. J. Wouter Botzen & Jeroen C. J. M. Van Den Bergh & Graciela Chichilnisky, 2018. "Climate Policy Without Intertemporal Dictatorship: Chichilnisky Criterion Versus Classical Utilitarianism In Dice," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 1-17, May.
    19. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    20. Jean-Pierre Drugeon & Thai Ha Huy, 2022. "A not so myopic axiomatization of discounting," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(1), pages 349-376, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:24:p:9289-:d:460762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.