IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i3p376-d201723.html
   My bibliography  Save this article

Modification Effects of Population Expansion, Ageing, and Adaptation on Heat-Related Mortality Risks Under Different Climate Change Scenarios in Guangzhou, China

Author

Listed:
  • Tao Liu

    (Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China)

  • Zhoupeng Ren

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Yonghui Zhang

    (Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China)

  • Baixiang Feng

    (Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China)

  • Hualiang Lin

    (School of Public Health, Sun Yat-sen University, Guangzhou 510080, China)

  • Jianpeng Xiao

    (Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China)

  • Weilin Zeng

    (Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China)

  • Xing Li

    (Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China)

  • Zhihao Li

    (Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China)

  • Shannon Rutherford

    (School of Medicine, Griffith University, Brisbane QLD 4111, Australia)

  • Yanjun Xu

    (Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China)

  • Shao Lin

    (Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, One University Pl, Rensselaer, NY 12148, USA)

  • Philip C. Nasca

    (Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, One University Pl, Rensselaer, NY 12148, USA)

  • Yaodong Du

    (Guangdong Provincial Climate Center, Guangzhou 510080, China)

  • Jinfeng Wang

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Cunrui Huang

    (School of Public Health, Sun Yat-sen University, Guangzhou 510080, China)

  • Peng Jia

    (Department of Earth Observation Science, Faculty of Geo-information Science and Earth Observation (ITC), University of Twente, 7500 Enschede, The Netherlands
    International Initiative on Spatial Lifecourse Epidemiology (ISLE), 7500 Enschede, The Netherlands)

  • Wenjun Ma

    (Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China)

Abstract

(1) Background: Although the health effects of future climate change have been examined in previous studies, few have considered additive impacts of population expansion, ageing, and adaptation. We aimed to quantify the future heat-related years of life lost ( YLLs ) under different Representative Concentration Pathways (RCP) scenarios and global-scale General Circulation Models (GCMs), and further to examine relative contributions of population expansion, ageing, and adaptation on these projections. (2) Methods: We used downscaled and bias-corrected projections of daily temperature from 27 GCMs under RCP2.6, 4.5, and 8.5 scenarios to quantify the potential annual heat-related YLLs in Guangzhou, China in the 2030s, 2060s, and 2090s, compared to those in the 1980s as a baseline. We also explored the modification effects of a range of population expansion, ageing, and adaptation scenarios on the heat-related YLLs . (3) Results: Global warming, particularly under the RCP8.5 scenario, would lead to a substantial increase in the heat-related YLLs in the 2030s, 2060s, and 2090s for the majority of the GCMs. For the total population, the annual heat-related YLLs under the RCP8.5 in the 2030s, 2060s, and 2090s were 2.2, 7.0, and 11.4 thousand, respectively. The heat effects would be significantly exacerbated by rapid population expansion and ageing. However, substantial heat-related YLLs could be counteracted by the increased adaptation (75% for the total population and 20% for the elderly). (4) Conclusions: The rapid population expansion and ageing coinciding with climate change may present an important health challenge in China, which, however, could be partially counteracted by the increased adaptation of individuals.

Suggested Citation

  • Tao Liu & Zhoupeng Ren & Yonghui Zhang & Baixiang Feng & Hualiang Lin & Jianpeng Xiao & Weilin Zeng & Xing Li & Zhihao Li & Shannon Rutherford & Yanjun Xu & Shao Lin & Philip C. Nasca & Yaodong Du & J, 2019. "Modification Effects of Population Expansion, Ageing, and Adaptation on Heat-Related Mortality Risks Under Different Climate Change Scenarios in Guangzhou, China," IJERPH, MDPI, vol. 16(3), pages 1-17, January.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:3:p:376-:d:201723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/3/376/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/3/376/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katie Jenkins & Jim Hall & Vassilis Glenis & Chris Kilsby & Mark McCarthy & Clare Goodess & Duncan Smith & Nick Malleson & Mark Birkin, 2014. "Probabilistic spatial risk assessment of heat impacts and adaptations for London," Climatic Change, Springer, vol. 124(1), pages 105-117, May.
    2. Tiantian Li & Radley M. Horton & Patrick L. Kinney, 2013. "Projections of seasonal patterns in temperature- related deaths for Manhattan, New York," Nature Climate Change, Nature, vol. 3(8), pages 717-721, August.
    3. Roger D. Peng & Francesca Dominici & Thomas A. Louis, 2006. "Model choice in time series studies of air pollution and mortality," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 179-203, March.
    4. Simon Gosling & Jason Lowe & Glenn McGregor & Mark Pelling & Bruce Malamud, 2009. "Associations between elevated atmospheric temperature and human mortality: a critical review of the literature," Climatic Change, Springer, vol. 92(3), pages 299-341, February.
    5. Adrian Raftery & Jennifer Chunn & Patrick Gerland & Hana Ševčíková, 2013. "Bayesian Probabilistic Projections of Life Expectancy for All Countries," Demography, Springer;Population Association of America (PAA), vol. 50(3), pages 777-801, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Wang, 2023. "Mediating Effect of Heat Waves between Ecosystem Services and Heat-Related Mortality of Characteristic Populations: Evidence from Jiangsu Province, China," IJERPH, MDPI, vol. 20(3), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleš Urban & Hana Hanzlíková & Jan Kyselý & Eva Plavcová, 2017. "Impacts of the 2015 Heat Waves on Mortality in the Czech Republic—A Comparison with Previous Heat Waves," IJERPH, MDPI, vol. 14(12), pages 1-19, December.
    2. Xunfeng Yang & Lianfa Li & Jinfeng Wang & Jixia Huang & Shijun Lu, 2015. "Cardiovascular Mortality Associated with Low and High Temperatures: Determinants of Inter-Region Vulnerability in China," IJERPH, MDPI, vol. 12(6), pages 1-16, May.
    3. Tahseen Ajaz & Muhammad Tariq Majeed, 2018. "Changing Climate Patterns and Women Health: An Empirical Analysis of District Rawalpindi Pakistan," Global Social Sciences Review, Humanity Only, vol. 3(4), pages 320-342, December.
    4. Heer, Burkhard & Polito, Vito & Wickens, Michael R., 2020. "Population aging, social security and fiscal limits," Journal of Economic Dynamics and Control, Elsevier, vol. 116(C).
    5. Xi Chen & Chih Ming Tan & Xiaobo Zhang & Xin Zhang, 2020. "The effects of prenatal exposure to temperature extremes on birth outcomes: the case of China," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(4), pages 1263-1302, October.
    6. Yunquan Zhang & Chuanhua Yu & Jin Yang & Lan Zhang & Fangfang Cui, 2017. "Diurnal Temperature Range in Relation to Daily Mortality and Years of Life Lost in Wuhan, China," IJERPH, MDPI, vol. 14(8), pages 1-11, August.
    7. Robert J. R. Elliott & Ingmar Schumacher & Cees Withagen, 2020. "Suggestions for a Covid-19 Post-Pandemic Research Agenda in Environmental Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1187-1213, August.
    8. Giovanni Matteo & Pierfrancesco Nardi & Stefano Grego & Caterina Guidi, 2018. "Bibliometric analysis of Climate Change Vulnerability Assessment research," Environment Systems and Decisions, Springer, vol. 38(4), pages 508-516, December.
    9. Jae Young Lee & Martin Röösli & Martina S. Ragettli, 2021. "Estimation of Heat-Attributable Mortality Using the Cross-Validated Best Temperature Metric in Switzerland and South Korea," IJERPH, MDPI, vol. 18(12), pages 1-9, June.
    10. Kai Luo & Wenjing Li & Ruiming Zhang & Runkui Li & Qun Xu & Yang Cao, 2016. "Ambient Fine Particulate Matter Exposure and Risk of Cardiovascular Mortality: Adjustment of the Meteorological Factors," IJERPH, MDPI, vol. 13(11), pages 1-17, November.
    11. Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
    12. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    13. Aleš Urban & Katrin Burkart & Jan Kyselý & Christian Schuster & Eva Plavcová & Hana Hanzlíková & Petr Štěpánek & Tobia Lakes, 2016. "Spatial Patterns of Heat-Related Cardiovascular Mortality in the Czech Republic," IJERPH, MDPI, vol. 13(3), pages 1-19, March.
    14. Weihua Dong & Zhao Liu & Lijie Zhang & Qiuhong Tang & Hua Liao & Xian'en Li, 2014. "Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    15. Hildegaard D. Link & José Pillich & Yehuda L. Klein, 2014. "Peak Electric Load Relief in Northern Manhattan," SAGE Open, , vol. 4(3), pages 21582440145, August.
    16. Meng Xu & Helge Brunborg & Joel E. Cohen, 2017. "Evaluating multi-regional population projections with Taylor’s law of mean–variance scaling and its generalisation," Journal of Population Research, Springer, vol. 34(1), pages 79-99, March.
    17. Elisaveta P. Petkova & Radley M. Horton & Daniel A. Bader & Patrick L. Kinney, 2013. "Projected Heat-Related Mortality in the U.S. Urban Northeast," IJERPH, MDPI, vol. 10(12), pages 1-14, December.
    18. Montero, José-María, 2018. "Geostatistics: Unde venis et quo vadis? /Geoestadística:¿De dónde vienes y a dónde vas?," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 36, pages 81-106, Enero.
    19. French, Declan, 2014. "International mortality modelling—An economic perspective," Economics Letters, Elsevier, vol. 122(2), pages 182-186.
    20. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:3:p:376-:d:201723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.