Trend Prediction of Event Popularity from Microblogs
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yin, Fulian & Pang, Hongyu & Xia, Xinyu & Shao, Xueying & Wu, Jianhong, 2021. "COVID-19 information contact and participation analysis and dynamic prediction in the Chinese Sina-microblog," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
- Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2020. "Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Fang, Siwei & Zhao, Nan & Chen, Nan & Xiong, Fei & Yi, Yunhui, 2019. "Analyzing and predicting network public opinion evolution based on group persuasion force of populism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 809-824.
- Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
- Pan, Jun-Shan & Li, Yuan-Qi & Hu, Han-Ping & Hu, Yong, 2021. "Modeling collective behavior of posting microblogs by stochastic differential equation with jump," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kemal Gökhan Nalbant & Sultan Almutairi & Asma Hassan Alshehri & Hayle Kemal & Suliman A Alsuhibany & Bong Jun Choi, 2024. "An efficient algorithm for data transmission certainty in IIoT sensing network: A priority-based approach," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-29, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yulan Li & Kun Ma, 2022. "A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
- Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
- Fan Zou & Yupeng Li & Jiahuan Huang, 2022. "Group interaction and evolution of customer reviews based on opinion dynamics towards product redesign," Electronic Commerce Research, Springer, vol. 22(4), pages 1131-1151, December.
- Ali Unlu & Abdulhamit Subasi, 2025. "Substance use prediction using artificial intelligence techniques," Journal of Computational Social Science, Springer, vol. 8(1), pages 1-40, February.
- Li, Ke & Shen, Ruifang & Wang, Zhenguo & Yan, Bowen & Yang, Qingshan & Zhou, Xuhong, 2023. "An efficient wind speed prediction method based on a deep neural network without future information leakage," Energy, Elsevier, vol. 267(C).
- Bai, Yulong & Liu, Ming-De & Ding, Lin & Ma, Yong-Jie, 2021. "Double-layer staged training echo-state networks for wind speed prediction using variational mode decomposition," Applied Energy, Elsevier, vol. 301(C).
- Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
- Geng, Xiulin & Xu, Lingyu & He, Xiaoyu & Yu, Jie, 2021. "Graph optimization neural network with spatio-temporal correlation learning for multi-node offshore wind speed forecasting," Renewable Energy, Elsevier, vol. 180(C), pages 1014-1025.
- Wei, Nan & Yin, Chuang & Yin, Lihua & Tan, Jingyi & Liu, Jinyuan & Wang, Shouxi & Qiao, Weibiao & Zeng, Fanhua, 2024. "Short-term load forecasting based on WM algorithm and transfer learning model," Applied Energy, Elsevier, vol. 353(PA).
- Liu, Ling & Wang, Jujie & Li, Jianping & Wei, Lu, 2023. "An online transfer learning model for wind turbine power prediction based on spatial feature construction and system-wide update," Applied Energy, Elsevier, vol. 340(C).
- Iloanusi, Ogechukwu & Ross, Arun, 2021. "Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Li, Jiale & Song, Zihao & Wang, Xuefei & Wang, Yanru & Jia, Yaya, 2022. "A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD," Energy, Elsevier, vol. 251(C).
- Elshafei, Basem & Popov, Atanas & Giddings, Donald, 2024. "Enhanced offshore wind resource assessment using hybrid data fusion and numerical models," Energy, Elsevier, vol. 310(C).
- Fei Chen & Zhiyang Wang & Yu He, 2023. "A Deep Neural Network-Based Optimal Scheduling Decision-Making Method for Microgrids," Energies, MDPI, vol. 16(22), pages 1-17, November.
- Wenchao Ban & Liangduo Shen, 2022. "PM2.5 Prediction Based on the CEEMDAN Algorithm and a Machine Learning Hybrid Model," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
- Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Anna Kulakowska & Anna Zylka & Karolina Grabowska & Katarzyna Ciesielska & Wojciech Nowak, 2020. "Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)," Energies, MDPI, vol. 13(24), pages 1-16, December.
- Yu, Enbo & Xu, Guoji & Han, Yan & Li, Yongle, 2022. "An efficient short-term wind speed prediction model based on cross-channel data integration and attention mechanisms," Energy, Elsevier, vol. 256(C).
- Luis Alfonso Moreno-Ponce & Ana María Pérez-Zuriaga & Alfredo García, 2025. "Predictive Models and GIS for Road Safety: Application to a Segment of the Chone–Flavio Alfaro Road," Sustainability, MDPI, vol. 17(11), pages 1-24, May.
- Amin Eshkiti & Fatemeh Sabouhi & Ali Bozorgi-Amiri, 2023. "A data-driven optimization model to response to COVID-19 pandemic: a case study," Annals of Operations Research, Springer, vol. 328(1), pages 337-386, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:13:y:2021:i:9:p:220-:d:621078. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.