IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923014514.html
   My bibliography  Save this article

Short-term load forecasting based on WM algorithm and transfer learning model

Author

Listed:
  • Wei, Nan
  • Yin, Chuang
  • Yin, Lihua
  • Tan, Jingyi
  • Liu, Jinyuan
  • Wang, Shouxi
  • Qiao, Weibiao
  • Zeng, Fanhua

Abstract

Transfer learning (TL) is a technique used in energy systems to enhance the accuracy of short-term load forecasting (STLF) with scarce data. The selection of transfer domains is decisive for the accuracy of TL. Traditional transfer domain selection algorithms based on linear and nonlinear analysis ignore the probability distribution of load series between target and source domains, inevitably resulting in negative transfer. This paper proposes a transfer domain selection algorithm that combines Wasserstein distance (WD) and maximal information coefficient (MIC), namely WM algorithm. The WM algorithm is used to determine transfer domains for training DSSFA-LSTM, a decomposition-based forecasting model that developed in our previous work. Again, TL is used to predict the short-term load of target domain, generating WM-DSSFA-LSTM-TL model. The experimental results show that the WM algorithm can effectively reduce the risk of negative transfer by measuring the similarity between time series variables based on nonlinear and probability distribution. In case studies, the WM-DSSFA-LSTM-TL model did not experience negative transfer, and its reliability is better than advanced forecasting models, including LSTM, Informer, and Autoformer. In ELP case, WM-DSSFA-LSTM-TL achieved the highest fitting degree; and compared to LSTM, Informer, and Autoformer, its R2 scores increased 0.76, 0.96, and 0.63, respectively.

Suggested Citation

  • Wei, Nan & Yin, Chuang & Yin, Lihua & Tan, Jingyi & Liu, Jinyuan & Wang, Shouxi & Qiao, Weibiao & Zeng, Fanhua, 2024. "Short-term load forecasting based on WM algorithm and transfer learning model," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014514
    DOI: 10.1016/j.apenergy.2023.122087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923014514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuang Yin & Nan Wei & Jinghang Wu & Chuhong Ruan & Xi Luo & Fanhua Zeng, 2024. "An Empirical Mode Decomposition-Based Hybrid Model for Sub-Hourly Load Forecasting," Energies, MDPI, vol. 17(2), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.