IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224004560.html
   My bibliography  Save this article

A hybrid model with combined feature selection based on optimized VMD and improved multi-objective coati optimization algorithm for short-term wind power prediction

Author

Listed:
  • Wang, Chao
  • Lin, Hong
  • Hu, Heng
  • Yang, Ming
  • Ma, Li

Abstract

With the continuous global increase in installed wind power capacity and subsequent surge in power generation, the contradiction between the safe operation of the grid and the efficient consumption of new energy after large-scale grid connection has become increasingly prominent. This paper presents a hybrid model prediction method to further improve the stability and accuracy of wind power prediction. Firstly, variational modal decomposition (VMD) optimized by the coati optimization algorithm (COA) is employed to decompose original wind power, mitigating the non-stationary characteristics of the power sequence. Subsequently, permutation entropy (PE) is used to recombine the decomposed components, and the combined feature selection method is achieved by integrating the Spearman correlation coefficient (SCC) and the autocorrelation function (ACF). Then, the multivariate combined model is constructed, and the improved multi-objective coati optimization algorithm (IMOCOA) determines the weight coefficients of each model to enhance the performance of the hybrid model. Finally, research and analysis are conducted from multiple scenarios and time scales using historical operating data from a wind farm in Xinjiang. The experimental results show that the proposed prediction model effectively improves the accuracy and stability of the wind power prediction compared with other popular prediction models.

Suggested Citation

  • Wang, Chao & Lin, Hong & Hu, Heng & Yang, Ming & Ma, Li, 2024. "A hybrid model with combined feature selection based on optimized VMD and improved multi-objective coati optimization algorithm for short-term wind power prediction," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004560
    DOI: 10.1016/j.energy.2024.130684
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224004560
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.