A Hybrid Method for the Run-Of-The-River Hydroelectric Power Plant Energy Forecast: HYPE Hydrological Model and Neural Network
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Miller, Don M. & Williams, Dan, 2003. "Shrinkage estimators of time series seasonal factors and their effect on forecasting accuracy," International Journal of Forecasting, Elsevier, vol. 19(4), pages 669-684.
- Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
- Simone Sala & Alfonso Amendola & Sonia Leva & Marco Mussetta & Alessandro Niccolai & Emanuele Ogliari, 2019. "Comparison of Data-Driven Techniques for Nowcasting Applied to an Industrial-Scale Photovoltaic Plant," Energies, MDPI, vol. 12(23), pages 1-19, November.
- Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
- Murat Cobaner & Tefaruk Haktanir & Ozgur Kisi, 2008. "Prediction of Hydropower Energy Using ANN for the Feasibility of Hydropower Plant Installation to an Existing Irrigation Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(6), pages 757-774, June.
- Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
- Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
- Monteiro, Claudio & Ramirez-Rosado, Ignacio J. & Fernandez-Jimenez, L. Alfredo, 2013. "Short-term forecasting model for electric power production of small-hydro power plants," Renewable Energy, Elsevier, vol. 50(C), pages 387-394.
- Gaudard, Ludovic & Avanzi, Francesco & De Michele, Carlo, 2018. "Seasonal aspects of the energy-water nexus: The case of a run-of-the-river hydropower plant," Applied Energy, Elsevier, vol. 210(C), pages 604-612.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Marcos Tadeu Barros de Oliveira & Patrícia de Sousa Oliveira Silva & Elisa Oliveira & André Luís Marques Marcato & Giovani Santiago Junqueira, 2021. "Availability Projections of Hydroelectric Power Plants through Monte Carlo Simulation," Energies, MDPI, vol. 14(24), pages 1-18, December.
- Marlene A. Perez-Villalpando & Kelly J. Gurubel Tun & Carlos A. Arellano-Muro & Fernando Fausto, 2021. "Inverse Optimal Control Using Metaheuristics of Hydropower Plant Model via Forecasting Based on the Feature Engineering," Energies, MDPI, vol. 14(21), pages 1-18, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- du Plessis, A.A. & Strauss, J.M. & Rix, A.J., 2021. "Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour," Applied Energy, Elsevier, vol. 285(C).
- Liu, Xiangjie & Liu, Yuanyan & Kong, Xiaobing & Ma, Lele & Besheer, Ahmad H. & Lee, Kwang Y., 2023. "Deep neural network for forecasting of photovoltaic power based on wavelet packet decomposition with similar day analysis," Energy, Elsevier, vol. 271(C).
- Maja Muftić Dedović & Samir Avdaković & Adnan Mujezinović & Nedis Dautbašić, 2020. "Integration of PV into the Sarajevo Canton Energy System-Air Quality and Heating Challenges," Energies, MDPI, vol. 14(1), pages 1-28, December.
- Yuxin Zhang & Yifei Yang & Xiaosi Li & Zijing Yuan & Yuki Todo & Haichuan Yang, 2023. "A Dendritic Neuron Model Optimized by Meta-Heuristics with a Power-Law-Distributed Population Interaction Network for Financial Time-Series Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, March.
- Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.
- Robert Jane & Gordon Parker & Gail Vaucher & Morris Berman, 2020. "Characterizing Meteorological Forecast Impact on Microgrid Optimization Performance and Design," Energies, MDPI, vol. 13(3), pages 1-23, January.
- Zhang, Zongbin & Huang, Xiaoqiao & Li, Chengli & Cheng, Feiyan & Tai, Yonghang, 2025. "CRAformer: A cross-residual attention transformer for solar irradiation multistep forecasting," Energy, Elsevier, vol. 320(C).
- Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014.
"A Review of Renewable Energy Supply and Energy Efficiency Technologies,"
IZA Discussion Papers
8145, Institute of Labor Economics (IZA).
- Abolhosseini, Shahrouz & Heshmati, Almas´ & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," Working Paper Series in Economics and Institutions of Innovation 374, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Alfredo Nespoli & Emanuele Ogliari & Sonia Leva & Alessandro Massi Pavan & Adel Mellit & Vanni Lughi & Alberto Dolara, 2019. "Day-Ahead Photovoltaic Forecasting: A Comparison of the Most Effective Techniques," Energies, MDPI, vol. 12(9), pages 1-15, April.
- Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
- Sulandari, Winita & Subanar, & Lee, Muhammad Hisyam & Rodrigues, Paulo Canas, 2020. "Indonesian electricity load forecasting using singular spectrum analysis, fuzzy systems and neural networks," Energy, Elsevier, vol. 190(C).
- Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Nguyen, Thi Ngoc & Müsgens, Felix, 2022. "What drives the accuracy of PV output forecasts?," Applied Energy, Elsevier, vol. 323(C).
- Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1520-1532.
- Kazim, Muhammad & Pirim, Harun & Yadav, Om Prakash & Le, Chau & Le, Trung, 2025. "Analysis of multilayer energy networks: A comprehensive literature review," Applied Energy, Elsevier, vol. 398(C).
- Jinyu Meng & Zengchuan Dong & Yiqing Shao & Shengnan Zhu & Shujun Wu, 2022. "Monthly Runoff Forecasting Based on Interval Sliding Window and Ensemble Learning," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
- Curry, Bruce, 2007. "Neural networks and seasonality: Some technical considerations," European Journal of Operational Research, Elsevier, vol. 179(1), pages 267-274, May.
- Voyant, Cyril & Muselli, Marc & Paoli, Christophe & Nivet, Marie-Laure, 2012. "Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation," Energy, Elsevier, vol. 39(1), pages 341-355.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:2:y:2020:i:4:p:22-428:d:428737. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jforec/v2y2020i4p22-428d428737.html