IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v323y2022ics0306261922009102.html
   My bibliography  Save this article

What drives the accuracy of PV output forecasts?

Author

Listed:
  • Nguyen, Thi Ngoc
  • Müsgens, Felix

Abstract

In this paper, 180 papers on photovoltaic (PV) output forecasting were reviewed and a database of forecast errors was extracted for statistical analysis. The paper shows that among the forecast models, hybrid models are most likely to become the primary form of PV output forecasting in the future. The use of data processing techniques is positively correlated with the forecast quality, while the lengths of the forecast horizons and out-of-sample test sets have negative effects on the forecast accuracy. The paper also found that the use of data normalization, the wavelet transform, and the inclusion of clear sky index and numerical weather prediction variables are the most effective data processing techniques. Furthermore, the paper found some evidence of “cherry picking” in the reporting of errors and we recommend that the test sets be at least one year long to avoid any distortion in the performance of the models.

Suggested Citation

  • Nguyen, Thi Ngoc & Müsgens, Felix, 2022. "What drives the accuracy of PV output forecasts?," Applied Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009102
    DOI: 10.1016/j.apenergy.2022.119603
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922009102
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119603?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Jingyue Wang & Zheng Qian & Jingyi Wang & Yan Pei, 2020. "Hour-Ahead Photovoltaic Power Forecasting Using an Analog Plus Neural Network Ensemble Method," Energies, MDPI, vol. 13(12), pages 1-17, June.
    3. Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
    4. Dukhwan Yu & Wonik Choi & Myoungsoo Kim & Ling Liu, 2020. "Forecasting Day-Ahead Hourly Photovoltaic Power Generation Using Convolutional Self-Attention Based Long Short-Term Memory," Energies, MDPI, vol. 13(15), pages 1-17, August.
    5. Eseye, Abinet Tesfaye & Zhang, Jianhua & Zheng, Dehua, 2018. "Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information," Renewable Energy, Elsevier, vol. 118(C), pages 357-367.
    6. Gao, Mingming & Li, Jianjing & Hong, Feng & Long, Dongteng, 2019. "Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM," Energy, Elsevier, vol. 187(C).
    7. Ogliari, Emanuele & Dolara, Alberto & Manzolini, Giampaolo & Leva, Sonia, 2017. "Physical and hybrid methods comparison for the day ahead PV output power forecast," Renewable Energy, Elsevier, vol. 113(C), pages 11-21.
    8. Rial A. Rajagukguk & Raden A. A. Ramadhan & Hyun-Jin Lee, 2020. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power," Energies, MDPI, vol. 13(24), pages 1-23, December.
    9. Theocharides, Spyros & Makrides, George & Livera, Andreas & Theristis, Marios & Kaimakis, Paris & Georghiou, George E., 2020. "Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing," Applied Energy, Elsevier, vol. 268(C).
    10. Barbieri, Florian & Rajakaruna, Sumedha & Ghosh, Arindam, 2017. "Very short-term photovoltaic power forecasting with cloud modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 242-263.
    11. VanDeventer, William & Jamei, Elmira & Thirunavukkarasu, Gokul Sidarth & Seyedmahmoudian, Mehdi & Soon, Tey Kok & Horan, Ben & Mekhilef, Saad & Stojcevski, Alex, 2019. "Short-term PV power forecasting using hybrid GASVM technique," Renewable Energy, Elsevier, vol. 140(C), pages 367-379.
    12. Larson, David P. & Nonnenmacher, Lukas & Coimbra, Carlos F.M., 2016. "Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest," Renewable Energy, Elsevier, vol. 91(C), pages 11-20.
    13. Philip J. Heptonstall & Robert J. K. Gross, 2021. "A systematic review of the costs and impacts of integrating variable renewables into power grids," Nature Energy, Nature, vol. 6(1), pages 72-83, January.
    14. Utpal Kumar Das & Kok Soon Tey & Mehdi Seyedmahmoudian & Mohd Yamani Idna Idris & Saad Mekhilef & Ben Horan & Alex Stojcevski, 2017. "SVR-Based Model to Forecast PV Power Generation under Different Weather Conditions," Energies, MDPI, vol. 10(7), pages 1-17, June.
    15. Stefano Massucco & Gabriele Mosaico & Matteo Saviozzi & Federico Silvestro, 2019. "A Hybrid Technique for Day-Ahead PV Generation Forecasting Using Clear-Sky Models or Ensemble of Artificial Neural Networks According to a Decision Tree Approach," Energies, MDPI, vol. 12(7), pages 1-21, April.
    16. Leva, S. & Dolara, A. & Grimaccia, F. & Mussetta, M. & Ogliari, E., 2017. "Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 88-100.
    17. Fernandez-Jimenez, L. Alfredo & Muñoz-Jimenez, Andrés & Falces, Alberto & Mendoza-Villena, Montserrat & Garcia-Garrido, Eduardo & Lara-Santillan, Pedro M. & Zorzano-Alba, Enrique & Zorzano-Santamaria,, 2012. "Short-term power forecasting system for photovoltaic plants," Renewable Energy, Elsevier, vol. 44(C), pages 311-317.
    18. Yadav, Amit Kumar & Chandel, S.S., 2017. "Identification of relevant input variables for prediction of 1-minute time-step photovoltaic module power using Artificial Neural Network and Multiple Linear Regression Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 955-969.
    19. Nikodinoska, Dragana & Käso, Mathias & Müsgens, Felix, 2022. "Solar and wind power generation forecasts using elastic net in time-varying forecast combinations," Applied Energy, Elsevier, vol. 306(PA).
    20. Donghun Lee & Kwanho Kim, 2019. "Recurrent Neural Network-Based Hourly Prediction of Photovoltaic Power Output Using Meteorological Information," Energies, MDPI, vol. 12(2), pages 1-22, January.
    21. Liu, Da & Sun, Kun, 2019. "Random forest solar power forecast based on classification optimization," Energy, Elsevier, vol. 187(C).
    22. Chao Huang & Longpeng Cao & Nanxin Peng & Sijia Li & Jing Zhang & Long Wang & Xiong Luo & Jenq-Haur Wang, 2018. "Day-Ahead Forecasting of Hourly Photovoltaic Power Based on Robust Multilayer Perception," Sustainability, MDPI, vol. 10(12), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Yu & Jicheng Liu & Jiakang Sun & Mengyu Shi, 2023. "Evolutionary Game of Digital-Driven Photovoltaic–Storage–Use Value Chain Collaboration: A Value Intelligence Creation Perspective," Sustainability, MDPI, vol. 15(4), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thi Ngoc Nguyen & Felix Musgens, 2021. "What drives the accuracy of PV output forecasts?," Papers 2111.02092, arXiv.org.
    2. Wang, Jianzhou & Zhou, Yilin & Li, Zhiwu, 2022. "Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm," Applied Energy, Elsevier, vol. 312(C).
    3. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    4. Hassan, Muhammed A. & Bailek, Nadjem & Bouchouicha, Kada & Nwokolo, Samuel Chukwujindu, 2021. "Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks," Renewable Energy, Elsevier, vol. 171(C), pages 191-209.
    5. Martina Radicioni & Valentina Lucaferri & Francesco De Lia & Antonino Laudani & Roberto Lo Presti & Gabriele Maria Lozito & Francesco Riganti Fulginei & Riccardo Schioppo & Mario Tucci, 2021. "Power Forecasting of a Photovoltaic Plant Located in ENEA Casaccia Research Center," Energies, MDPI, vol. 14(3), pages 1-22, January.
    6. Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).
    7. Minli Wang & Peihong Wang & Tao Zhang, 2022. "Evidential Extreme Learning Machine Algorithm-Based Day-Ahead Photovoltaic Power Forecasting," Energies, MDPI, vol. 15(11), pages 1-25, May.
    8. Medine Colak & Mehmet Yesilbudak & Ramazan Bayindir, 2020. "Daily Photovoltaic Power Prediction Enhanced by Hybrid GWO-MLP, ALO-MLP and WOA-MLP Models Using Meteorological Information," Energies, MDPI, vol. 13(4), pages 1-19, February.
    9. Korkmaz, Deniz, 2021. "SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 300(C).
    10. Athanasios I. Salamanis & Georgia Xanthopoulou & Napoleon Bezas & Christos Timplalexis & Angelina D. Bintoudi & Lampros Zyglakis & Apostolos C. Tsolakis & Dimosthenis Ioannidis & Dionysios Kehagias & , 2020. "Benchmark Comparison of Analytical, Data-Based and Hybrid Models for Multi-Step Short-Term Photovoltaic Power Generation Forecasting," Energies, MDPI, vol. 13(22), pages 1-31, November.
    11. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Elena Collino & Dario Ronzio, 2021. "Exploitation of a New Short-Term Multimodel Photovoltaic Power Forecasting Method in the Very Short-Term Horizon to Derive a Multi-Time Scale Forecasting System," Energies, MDPI, vol. 14(3), pages 1-30, February.
    13. Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
    14. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    15. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    16. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Xu, Fang Yuan & Tang, Rui Xin & Xu, Si Bin & Fan, Yi Liang & Zhou, Ya & Zhang, Hao Tian, 2021. "Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification," Energy, Elsevier, vol. 223(C).
    18. Zhen, Hao & Niu, Dongxiao & Wang, Keke & Shi, Yucheng & Ji, Zhengsen & Xu, Xiaomin, 2021. "Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information," Energy, Elsevier, vol. 231(C).
    19. Alfredo Nespoli & Emanuele Ogliari & Sonia Leva & Alessandro Massi Pavan & Adel Mellit & Vanni Lughi & Alberto Dolara, 2019. "Day-Ahead Photovoltaic Forecasting: A Comparison of the Most Effective Techniques," Energies, MDPI, vol. 12(9), pages 1-15, April.
    20. Zhao, Wei & Zhang, Haoran & Zheng, Jianqin & Dai, Yuanhao & Huang, Liqiao & Shang, Wenlong & Liang, Yongtu, 2021. "A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.