IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p876-d103113.html
   My bibliography  Save this article

SVR-Based Model to Forecast PV Power Generation under Different Weather Conditions

Author

Listed:
  • Utpal Kumar Das

    (Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Kok Soon Tey

    (Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Mehdi Seyedmahmoudian

    (School of Engineering, Deakin University, Melbourne 3216, Australia)

  • Mohd Yamani Idna Idris

    (Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Saad Mekhilef

    (Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Ben Horan

    (School of Engineering, Deakin University, Melbourne 3216, Australia)

  • Alex Stojcevski

    (School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Victoria 3122, Australia)

Abstract

Inaccurate forecasting of photovoltaic (PV) power generation is a great concern in the planning and operation of stable and reliable electric grid systems as well as in promoting large-scale PV deployment. The paper proposes a generalized PV power forecasting model based on support vector regression, historical PV power output, and corresponding meteorological data. Weather conditions are broadly classified into two categories, namely, normal condition (clear sky) and abnormal condition (rainy or cloudy day). A generalized day-ahead forecasting model is developed to forecast PV power generation at any weather condition in a particular region. The proposed model is applied and experimentally validated by three different types of PV stations in the same location at different weather conditions. Furthermore, a conventional artificial neural network (ANN)-based forecasting model is utilized, using the same experimental data-sets of the proposed model. The analytical results showed that the proposed model achieved better forecasting accuracy with less computational complexity when compared with other models, including the conventional ANN model. The proposed model is also effective and practical in forecasting existing grid-connected PV power generation.

Suggested Citation

  • Utpal Kumar Das & Kok Soon Tey & Mehdi Seyedmahmoudian & Mohd Yamani Idna Idris & Saad Mekhilef & Ben Horan & Alex Stojcevski, 2017. "SVR-Based Model to Forecast PV Power Generation under Different Weather Conditions," Energies, MDPI, vol. 10(7), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:876-:d:103113
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Strzalka, Aneta & Alam, Nazmul & Duminil, Eric & Coors, Volker & Eicker, Ursula, 2012. "Large scale integration of photovoltaics in cities," Applied Energy, Elsevier, vol. 93(C), pages 413-421.
    2. Fei Wang & Zengqiang Mi & Shi Su & Hongshan Zhao, 2012. "Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters," Energies, MDPI, vol. 5(5), pages 1-16, May.
    3. Diagne, Maimouna & David, Mathieu & Lauret, Philippe & Boland, John & Schmutz, Nicolas, 2013. "Review of solar irradiance forecasting methods and a proposition for small-scale insular grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 65-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Athanasios I. Salamanis & Georgia Xanthopoulou & Napoleon Bezas & Christos Timplalexis & Angelina D. Bintoudi & Lampros Zyglakis & Apostolos C. Tsolakis & Dimosthenis Ioannidis & Dionysios Kehagias & , 2020. "Benchmark Comparison of Analytical, Data-Based and Hybrid Models for Multi-Step Short-Term Photovoltaic Power Generation Forecasting," Energies, MDPI, vol. 13(22), pages 1-31, November.
    2. Leidy Gutiérrez & Julian Patiño & Eduardo Duque-Grisales, 2021. "A Comparison of the Performance of Supervised Learning Algorithms for Solar Power Prediction," Energies, MDPI, vol. 14(15), pages 1-16, July.
    3. Das, Utpal Kumar & Shrivastava, Prashant & Tey, Kok Soon & Bin Idris, Mohd Yamani Idna & Mekhilef, Saad & Jamei, Elmira & Seyedmahmoudian, Mehdi & Stojcevski, Alex, 2020. "Advancement of lithium-ion battery cells voltage equalization techniques: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    5. Korkmaz, Deniz, 2021. "SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 300(C).
    6. Javier Huertas Tato & Miguel Centeno Brito, 2018. "Using Smart Persistence and Random Forests to Predict Photovoltaic Energy Production," Energies, MDPI, vol. 12(1), pages 1-12, December.
    7. Sameer Al-Dahidi & Osama Ayadi & Jehad Adeeb & Mohammad Alrbai & Bashar R. Qawasmeh, 2018. "Extreme Learning Machines for Solar Photovoltaic Power Predictions," Energies, MDPI, vol. 11(10), pages 1-18, October.
    8. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    9. Zheng, Lingwei & Liu, Zhaokun & Shen, Junnan & Wu, Chenxi, 2018. "Very short-term maximum Lyapunov exponent forecasting tool for distributed photovoltaic output," Applied Energy, Elsevier, vol. 229(C), pages 1128-1139.
    10. Martina Radicioni & Valentina Lucaferri & Francesco De Lia & Antonino Laudani & Roberto Lo Presti & Gabriele Maria Lozito & Francesco Riganti Fulginei & Riccardo Schioppo & Mario Tucci, 2021. "Power Forecasting of a Photovoltaic Plant Located in ENEA Casaccia Research Center," Energies, MDPI, vol. 14(3), pages 1-22, January.
    11. Nguyen, Thi Ngoc & Müsgens, Felix, 2022. "What drives the accuracy of PV output forecasts?," Applied Energy, Elsevier, vol. 323(C).
    12. Takuji Matsumoto & Yuji Yamada, 2021. "Comprehensive and Comparative Analysis of GAM-Based PV Power Forecasting Models Using Multidimensional Tensor Product Splines against Machine Learning Techniques," Energies, MDPI, vol. 14(21), pages 1-22, November.
    13. Yuan-Kang Wu & Cheng-Liang Huang & Quoc-Thang Phan & Yuan-Yao Li, 2022. "Completed Review of Various Solar Power Forecasting Techniques Considering Different Viewpoints," Energies, MDPI, vol. 15(9), pages 1-22, May.
    14. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & David Celeita & George Anders, 2023. "Deep and Machine Learning Models to Forecast Photovoltaic Power Generation," Energies, MDPI, vol. 16(10), pages 1-24, May.
    15. Nailya Maitanova & Jan-Simon Telle & Benedikt Hanke & Matthias Grottke & Thomas Schmidt & Karsten von Maydell & Carsten Agert, 2020. "A Machine Learning Approach to Low-Cost Photovoltaic Power Prediction Based on Publicly Available Weather Reports," Energies, MDPI, vol. 13(3), pages 1-23, February.
    16. Mohamad Kharseh & Holger Wallbaum, 2018. "How Adding a Battery to a Grid-Connected Photovoltaic System Can Increase its Economic Performance: A Comparison of Different Scenarios," Energies, MDPI, vol. 12(1), pages 1-19, December.
    17. Kihan Kim & Jin Hur, 2019. "Weighting Factor Selection of the Ensemble Model for Improving Forecast Accuracy of Photovoltaic Generating Resources," Energies, MDPI, vol. 12(17), pages 1-13, August.
    18. Dong-Dong Yuan & Ming Li & Heng-Yi Li & Cheng-Jian Lin & Bing-Xiang Ji, 2022. "Wind Power Prediction Method: Support Vector Regression Optimized by Improved Jellyfish Search Algorithm," Energies, MDPI, vol. 15(17), pages 1-19, September.
    19. Thi Ngoc Nguyen & Felix Musgens, 2021. "What drives the accuracy of PV output forecasts?," Papers 2111.02092, arXiv.org.
    20. Hyung Keun Ahn & Neungsoo Park, 2021. "Deep RNN-Based Photovoltaic Power Short-Term Forecast Using Power IoT Sensors," Energies, MDPI, vol. 14(2), pages 1-17, January.
    21. Nguyen Gia Minh Thao & Kenko Uchida, 2018. "An Improved Interval Fuzzy Modeling Method: Applications to the Estimation of Photovoltaic/Wind/Battery Power in Renewable Energy Systems," Energies, MDPI, vol. 11(3), pages 1-26, February.
    22. Yue Chen & Zhizhong Guo & Abebe Tilahun Tadie & Hongbo Li & Guizhong Wang & Yingwei Hou, 2019. "Tie-Line Reserve Power Probability Margin for Day-Ahead Dispatching in Power Systems with High Proportion Renewable Power Sources," Energies, MDPI, vol. 12(24), pages 1-23, December.
    23. Hassan, Muhammed A. & Bailek, Nadjem & Bouchouicha, Kada & Nwokolo, Samuel Chukwujindu, 2021. "Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks," Renewable Energy, Elsevier, vol. 171(C), pages 191-209.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
    2. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    3. Si-Ya Wang & Jun Qiu & Fang-Fang Li, 2018. "Hybrid Decomposition-Reconfiguration Models for Long-Term Solar Radiation Prediction Only Using Historical Radiation Records," Energies, MDPI, vol. 11(6), pages 1-17, May.
    4. Chao-Rong Chen & Unit Three Kartini, 2017. "k-Nearest Neighbor Neural Network Models for Very Short-Term Global Solar Irradiance Forecasting Based on Meteorological Data," Energies, MDPI, vol. 10(2), pages 1-18, February.
    5. Varaha Satra Bharath Kurukuru & Ahteshamul Haque & Mohammed Ali Khan & Subham Sahoo & Azra Malik & Frede Blaabjerg, 2021. "A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 14(15), pages 1-35, August.
    6. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    7. Boland, John, 2015. "Spatial-temporal forecasting of solar radiation," Renewable Energy, Elsevier, vol. 75(C), pages 607-616.
    8. Javier Borquez & Hector Chavez & Karina A. Barbosa & Marcela Jamett & Rodrigo Acuna, 2020. "A Simple Distribution Energy Tariff under the Penetration of DG," Energies, MDPI, vol. 13(8), pages 1-17, April.
    9. Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.
    10. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    11. Marian Liberos & Raúl González-Medina & Gabriel Garcerá & Emilio Figueres, 2019. "A Method to Enhance the Global Efficiency of High-Power Photovoltaic Inverters Connected in Parallel," Energies, MDPI, vol. 12(11), pages 1-19, June.
    12. John Boland & Sleiman Farah & Lei Bai, 2022. "Forecasting of Wind and Solar Farm Output in the Australian National Electricity Market: A Review," Energies, MDPI, vol. 15(1), pages 1-18, January.
    13. Javier López Gómez & Ana Ogando Martínez & Francisco Troncoso Pastoriza & Lara Febrero Garrido & Enrique Granada Álvarez & José Antonio Orosa García, 2020. "Photovoltaic Power Prediction Using Artificial Neural Networks and Numerical Weather Data," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    14. Mohanty, Sthitapragyan & Patra, Prashanta K. & Sahoo, Sudhansu S. & Mohanty, Asit, 2017. "Forecasting of solar energy with application for a growing economy like India: Survey and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 539-553.
    15. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    16. Elsinga, Boudewijn & van Sark, Wilfried G.J.H.M., 2017. "Short-term peer-to-peer solar forecasting in a network of photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 1464-1483.
    17. Reikard, Gordon & Haupt, Sue Ellen & Jensen, Tara, 2017. "Forecasting ground-level irradiance over short horizons: Time series, meteorological, and time-varying parameter models," Renewable Energy, Elsevier, vol. 112(C), pages 474-485.
    18. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    19. Mendis, Thushini & Huang, Zhaojian & Xu, Shen & Zhang, Weirong, 2020. "Economic potential analysis of photovoltaic integrated shading strategies on commercial building facades in urban blocks: A case study of Colombo, Sri Lanka," Energy, Elsevier, vol. 194(C).
    20. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:876-:d:103113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.