IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2692-d1662180.html
   My bibliography  Save this article

PV Production Forecast Using Hybrid Models of Time Series with Machine Learning Methods

Author

Listed:
  • Thomas Haupt

    (Engineering Faculty, Hochschule Ansbach, 91522 Ansbach, Germany)

  • Oscar Trull

    (Department of Applied Statistics, Operational Research and Quality, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Mathias Moog

    (Engineering Faculty, Hochschule Ansbach, 91522 Ansbach, Germany)

Abstract

Photovoltaic (PV) energy production in Western countries increases yearly. Its production can be carried out in a highly distributed manner, not being necessary to use large concentrations of solar panels. As a result of this situation, electricity production through PV has spread to homes and open-field plans. Production varies substantially depending on the panels’ location and weather conditions. However, the integration of PV systems presents a challenge for both grid planning and operation. Furthermore, the predictability of rooftop-installed PV systems can play an essential role in home energy management systems (HEMS) for optimising local self-consumption and integrating small PV systems in the low-voltage grid. In this article, we show a novel methodology used to predict the electrical energy production of a 48 kWp PV system located at the Campus Feuchtwangen, part of Hochschule Ansbach. This methodology involves hybrid time series techniques that include state space models supported by artificial intelligence tools to produce predictions. The results show an accuracy of around 3% on nRMSE for the prediction, depending on the different system orientations.

Suggested Citation

  • Thomas Haupt & Oscar Trull & Mathias Moog, 2025. "PV Production Forecast Using Hybrid Models of Time Series with Machine Learning Methods," Energies, MDPI, vol. 18(11), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2692-:d:1662180
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2692/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2692/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan-Kang Wu & Cheng-Liang Huang & Quoc-Thang Phan & Yuan-Yao Li, 2022. "Completed Review of Various Solar Power Forecasting Techniques Considering Different Viewpoints," Energies, MDPI, vol. 15(9), pages 1-22, May.
    2. Wang, Lining & Mao, Mingxuan & Xie, Jili & Liao, Zheng & Zhang, Hao & Li, Huanxin, 2023. "Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model," Energy, Elsevier, vol. 262(PB).
    3. Rial A. Rajagukguk & Raden A. A. Ramadhan & Hyun-Jin Lee, 2020. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power," Energies, MDPI, vol. 13(24), pages 1-23, December.
    4. Nguyen, Thi Ngoc & Müsgens, Felix, 2022. "What drives the accuracy of PV output forecasts?," Applied Energy, Elsevier, vol. 323(C).
    5. Scott, Connor & Ahsan, Mominul & Albarbar, Alhussein, 2023. "Machine learning for forecasting a photovoltaic (PV) generation system," Energy, Elsevier, vol. 278(C).
    6. Ewa Chodakowska & Joanicjusz Nazarko & Łukasz Nazarko & Hesham S. Rabayah & Raed M. Abendeh & Rami Alawneh, 2023. "ARIMA Models in Solar Radiation Forecasting in Different Geographic Locations," Energies, MDPI, vol. 16(13), pages 1-24, June.
    7. Adar, Mustapha & Najih, Youssef & Gouskir, Mohamed & Chebak, Ahmed & Mabrouki, Mustapha & Bennouna, Amin, 2020. "Three PV plants performance analysis using the principal component analysis method," Energy, Elsevier, vol. 207(C).
    8. Nailya Maitanova & Jan-Simon Telle & Benedikt Hanke & Matthias Grottke & Thomas Schmidt & Karsten von Maydell & Carsten Agert, 2020. "A Machine Learning Approach to Low-Cost Photovoltaic Power Prediction Based on Publicly Available Weather Reports," Energies, MDPI, vol. 13(3), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen-Chang Tsai & Chia-Sheng Tu & Chih-Ming Hong & Whei-Min Lin, 2023. "A Review of State-of-the-Art and Short-Term Forecasting Models for Solar PV Power Generation," Energies, MDPI, vol. 16(14), pages 1-30, July.
    2. Yang Gao & Xiaohong Zhang & Qingyuan Yan & Yanxue Li, 2025. "Demand Response Strategies for Electric Vehicle Charging and Discharging Behavior Based on Road–Electric Grid Interaction and User Psychology," Sustainability, MDPI, vol. 17(6), pages 1-27, March.
    3. Hao, Jianhua & Liu, Fangai & Zhang, Weiwei, 2024. "Multi-scale RWKV with 2-dimensional temporal convolutional network for short-term photovoltaic power forecasting," Energy, Elsevier, vol. 309(C).
    4. Qiu, Lihong & Ma, Wentao & Feng, Xiaoyang & Dai, Jiahui & Dong, Yuzhuo & Duan, Jiandong & Chen, Badong, 2024. "A hybrid PV cluster power prediction model using BLS with GMCC and error correction via RVM considering an improved statistical upscaling technique," Applied Energy, Elsevier, vol. 359(C).
    5. Ewa Chodakowska & Joanicjusz Nazarko & Łukasz Nazarko & Hesham S. Rabayah, 2024. "Solar Radiation Forecasting: A Systematic Meta-Review of Current Methods and Emerging Trends," Energies, MDPI, vol. 17(13), pages 1-27, June.
    6. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    7. Wang, Pengfei & Liu, Yide & Li, Yuchen & Tang, Xianlin & Ren, Qinlong, 2024. "Power prediction for salinity-gradient osmotic energy conversion based on multiscale and multidimensional convolutional neural network," Energy, Elsevier, vol. 313(C).
    8. Tao, Kejun & Zhao, Jinghao & Tao, Ye & Qi, Qingqing & Tian, Yajun, 2024. "Operational day-ahead photovoltaic power forecasting based on transformer variant," Applied Energy, Elsevier, vol. 373(C).
    9. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    10. Joe Yazbeck & John B. Rundle, 2023. "A Fusion of Geothermal and InSAR Data with Machine Learning for Enhanced Deformation Forecasting at the Geysers," Land, MDPI, vol. 12(11), pages 1-22, October.
    11. Yongju Son & Yeunggurl Yoon & Jintae Cho & Sungyun Choi, 2022. "Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    12. Aurelia Rybak & Aleksandra Rybak & Spas D. Kolev, 2023. "Modeling the Photovoltaic Power Generation in Poland in the Light of PEP2040: An Application of Multiple Regression," Energies, MDPI, vol. 16(22), pages 1-17, November.
    13. Blaifi, Sid-ali & Mellit, Adel & Taghezouit, Bilal & Moulahoum, Samir & Hafdaoui, Hichem, 2025. "A simple non-parametric model for photovoltaic output power prediction," Renewable Energy, Elsevier, vol. 240(C).
    14. Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
    15. Lilla Barancsuk & Veronika Groma & Dalma Günter & János Osán & Bálint Hartmann, 2024. "Estimation of Solar Irradiance Using a Neural Network Based on the Combination of Sky Camera Images and Meteorological Data," Energies, MDPI, vol. 17(2), pages 1-25, January.
    16. Hategan, Sergiu-Mihai & Stefu, Nicoleta & Petreus, Dorin & Szilagyi, Eniko & Patarau, Toma & Paulescu, Marius, 2025. "Short-term forecasting of PV power based on aggregated machine learning and sky imagery approaches," Energy, Elsevier, vol. 316(C).
    17. Shriram S. Rangarajan & Chandan Kumar Shiva & AVV Sudhakar & Umashankar Subramaniam & E. Randolph Collins & Tomonobu Senjyu, 2023. "Avant-Garde Solar Plants with Artificial Intelligence and Moonlighting Capabilities as Smart Inverters in a Smart Grid," Energies, MDPI, vol. 16(3), pages 1-30, January.
    18. Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
    19. Yu, Yue & Xiao, Xinping & Gao, Mingyun & Rao, Congjun, 2025. "Dynamic time-delay discrete grey model based on GOWA operator for renewable energy generation cost prediction," Renewable Energy, Elsevier, vol. 242(C).
    20. Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2692-:d:1662180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.