IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i4p2473-2492d47504.html
   My bibliography  Save this article

Optimizing Capacities of Distributed Generation and Energy Storage in a Small Autonomous Power System Considering Uncertainty in Renewables

Author

Listed:
  • Ying-Yi Hong

    (Department of Electrical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Taoyuan 32023, Taiwan)

  • Yuan-Ming Lai

    (Department of Electrical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Taoyuan 32023, Taiwan)

  • Yung-Ruei Chang

    (Division of Smart Grid, Institute of Nuclear Energy Research, Longtan 32546, Taiwan)

  • Yih-Der Lee

    (Division of Smart Grid, Institute of Nuclear Energy Research, Longtan 32546, Taiwan)

  • Pang-Wei Liu

    (Division of Smart Grid, Institute of Nuclear Energy Research, Longtan 32546, Taiwan)

Abstract

This paper explores real power generation planning, considering distributed generation resources and energy storage in a small standalone power system. On account of the Kyoto Protocol and Copenhagen Accord, wind and photovoltaic (PV) powers are considered as clean and renewable energies. In this study, a genetic algorithm (GA) was used to determine the optimal capacities of wind-turbine-generators, PV, diesel generators and energy storage in a small standalone power system. The investment costs (installation, unit and maintenance costs) of the distributed generation resources and energy storage and the cost of fuel for the diesel generators were minimized while the reliability requirement and CO 2 emission limit were fulfilled. The renewable sources and loads were modeled by random variables because of their uncertainties. The equality and inequality constraints in the genetic algorithms were treated by cumulant effects and cumulative probability of random variables, respectively. The IEEE reliability data for an 8760 h load profile with a 150 kW peak load were used to demonstrate the applicability of the proposed method.

Suggested Citation

  • Ying-Yi Hong & Yuan-Ming Lai & Yung-Ruei Chang & Yih-Der Lee & Pang-Wei Liu, 2015. "Optimizing Capacities of Distributed Generation and Energy Storage in a Small Autonomous Power System Considering Uncertainty in Renewables," Energies, MDPI, vol. 8(4), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:2473-2492:d:47504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/4/2473/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/4/2473/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kashefi Kaviani, A. & Riahy, G.H. & Kouhsari, SH.M., 2009. "Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages," Renewable Energy, Elsevier, vol. 34(11), pages 2380-2390.
    2. Lujano-Rojas, Juan M. & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2013. "Probabilistic modelling and analysis of stand-alone hybrid power systems," Energy, Elsevier, vol. 63(C), pages 19-27.
    3. Lujano-Rojas, Juan M. & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2012. "Optimal sizing of small wind/battery systems considering the DC bus voltage stability effect on energy capture, wind speed variability, and load uncertainty," Applied Energy, Elsevier, vol. 93(C), pages 404-412.
    4. Diaf, S. & Notton, G. & Belhamel, M. & Haddadi, M. & Louche, A., 2008. "Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions," Applied Energy, Elsevier, vol. 85(10), pages 968-987, October.
    5. Chen, Shin-Guang, 2013. "Bayesian approach for optimal PV system sizing under climate change," Omega, Elsevier, vol. 41(2), pages 176-185.
    6. Nelson, D.B. & Nehrir, M.H. & Wang, C., 2006. "Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems," Renewable Energy, Elsevier, vol. 31(10), pages 1641-1656.
    7. Kaldellis, J. K., 2002. "Optimum autonomous wind-power system sizing for remote consumers, using long-term wind speed data," Applied Energy, Elsevier, vol. 71(3), pages 215-233, March.
    8. Borhanazad, Hanieh & Mekhilef, Saad & Gounder Ganapathy, Velappa & Modiri-Delshad, Mostafa & Mirtaheri, Ali, 2014. "Optimization of micro-grid system using MOPSO," Renewable Energy, Elsevier, vol. 71(C), pages 295-306.
    9. Sharafi, Masoud & ELMekkawy, Tarek Y., 2014. "Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach," Renewable Energy, Elsevier, vol. 68(C), pages 67-79.
    10. Diaf, S. & Diaf, D. & Belhamel, M. & Haddadi, M. & Louche, A., 2007. "A methodology for optimal sizing of autonomous hybrid PV/wind system," Energy Policy, Elsevier, vol. 35(11), pages 5708-5718, November.
    11. Ai, B. & Yang, H. & Shen, H. & Liao, X., 2003. "Computer-aided design of PV/wind hybrid system," Renewable Energy, Elsevier, vol. 28(10), pages 1491-1512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    2. Angelo Algieri, 2018. "Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy)," Energies, MDPI, vol. 11(3), pages 1-17, March.
    3. Shan Deng & Qinghua Wu & Zhaoxia Jing & Lilan Wu & Feng Wei & Xiaoxin Zhou, 2017. "Optimal Capacity Configuration for Energy Hubs Considering Part-Load Characteristics of Generation Units," Energies, MDPI, vol. 10(12), pages 1-19, November.
    4. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    5. Mingqi Wang & Xinqiao Zheng, 2017. "Sensitivity Analysis of Time Length of Photovoltaic Output Power to Capacity Configuration of Energy Storage Systems," Energies, MDPI, vol. 10(10), pages 1-15, October.
    6. Wei-Tzer Huang & Tsai-Hsiang Chen & Hong-Ting Chen & Jhih-Siang Yang & Kuo-Lung Lian & Yung-Ruei Chang & Yih-Der Lee & Yuan-Hsiang Ho, 2015. "A Two-stage Optimal Network Reconfiguration Approach for Minimizing Energy Loss of Distribution Networks Using Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 8(12), pages 1-17, December.
    7. James Hamilton & Michael Negnevitsky & Xiaolin Wang & Evgenii Semshchikov, 2020. "The Role of Low-Load Diesel in Improved Renewable Hosting Capacity within Isolated Power Systems," Energies, MDPI, vol. 13(16), pages 1-15, August.
    8. José Agüero-Rubio & Javier López-Martínez & José Ignacio Rojas-Sola & Ángel Jesús Callejón-Ferre, 2016. "A Design Alternative to Improve the Interconnection Capability of New Distributed-Generation Installations into Existing Griddle," Energies, MDPI, vol. 9(6), pages 1-11, May.
    9. Xia Zhou & Wei Li & Mengya Li & Qian Chen & Chaohai Zhang & Jilai Yu, 2016. "Effect of the Coordinative Optimization of Interruptible Loads in Primary Frequency Regulation on Frequency Recovery," Energies, MDPI, vol. 9(3), pages 1-11, March.
    10. Reza Ahmadi Kordkheili & Seyyed Ali Pourmousavi & Mehdi Savaghebi & Josep M. Guerrero & Mohammad Hashem Nehrir, 2016. "Assessing the Potential of Plug-in Electric Vehicles in Active Distribution Networks," Energies, MDPI, vol. 9(1), pages 1-17, January.
    11. Xaviery N. Penisa & Michael T. Castro & Jethro Daniel A. Pascasio & Eugene A. Esparcia & Oliver Schmidt & Joey D. Ocon, 2020. "Projecting the Price of Lithium-Ion NMC Battery Packs Using a Multifactor Learning Curve Model," Energies, MDPI, vol. 13(20), pages 1-18, October.
    12. Maher Selim & Ryan Zhou & Wenying Feng & Peter Quinsey, 2021. "Estimating Energy Forecasting Uncertainty for Reliable AI Autonomous Smart Grid Design," Energies, MDPI, vol. 14(1), pages 1-15, January.
    13. Ying-Yi Hong & Yong-Zhen Lai & Yung-Ruei Chang & Yih-Der Lee & Chia-Hui Lin, 2018. "Optimizing Energy Storage Capacity in Islanded Microgrids Using Immunity-Based Multiobjective Planning," Energies, MDPI, vol. 11(3), pages 1-15, March.
    14. Shenbo Yang & Zhongfu Tan & Liwei Ju & Hongyu Lin & Gejirifu De & Qingkun Tan & Feng’ao Zhou, 2018. "An Income Distributing Optimization Model for Cooperative Operation among Different Types of Power Sellers Considering Different Scenarios," Energies, MDPI, vol. 11(11), pages 1-24, October.
    15. José Raúl Castro & Maarouf Saad & Serge Lefebvre & Dalal Asber & Laurent Lenoir, 2016. "Coordinated Voltage Control in Distribution Network with the Presence of DGs and Variable Loads Using Pareto and Fuzzy Logic," Energies, MDPI, vol. 9(2), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    2. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
    3. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    4. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    5. Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A., 2016. "A novel framework for optimal design of hybrid renewable energy-based autonomous energy systems: A case study for Namin, Iran," Energy, Elsevier, vol. 98(C), pages 168-180.
    6. Khare, Vikas & Nema, Savita & Baredar, Prashant, 2016. "Solar–wind hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 23-33.
    7. Mohammadali Kiehbadroudinezhad & Adel Merabet & Ahmed G. Abo-Khalil & Tareq Salameh & Chaouki Ghenai, 2022. "Intelligent and Optimized Microgrids for Future Supply Power from Renewable Energy Resources: A Review," Energies, MDPI, vol. 15(9), pages 1-21, May.
    8. Zhou, P. & Jin, R.Y. & Fan, L.W., 2016. "Reliability and economic evaluation of power system with renewables: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 537-547.
    9. Maleki, Akbar & Ameri, Mehran & Keynia, Farshid, 2015. "Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system," Renewable Energy, Elsevier, vol. 80(C), pages 552-563.
    10. Fux, Samuel F. & Benz, Michael J. & Guzzella, Lino, 2013. "Economic and environmental aspects of the component sizing for a stand-alone building energy system: A case study," Renewable Energy, Elsevier, vol. 55(C), pages 438-447.
    11. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    12. Elma, Onur & Selamogullari, Ugur Savas, 2012. "A comparative sizing analysis of a renewable energy supplied stand-alone house considering both demand side and source side dynamics," Applied Energy, Elsevier, vol. 96(C), pages 400-408.
    13. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    14. Zahraee, S.M. & Khalaji Assadi, M. & Saidur, R., 2016. "Application of Artificial Intelligence Methods for Hybrid Energy System Optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 617-630.
    15. Mohamed, Mohamed A. & Eltamaly, Ali M. & Alolah, Abdulrahman I., 2017. "Swarm intelligence-based optimization of grid-dependent hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 515-524.
    16. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
    17. Kaldellis, J.K. & Zafirakis, D. & Kavadias, K., 2012. "Minimum cost solution of wind–photovoltaic based stand-alone power systems for remote consumers," Energy Policy, Elsevier, vol. 42(C), pages 105-117.
    18. Thapar, Vinay & Agnihotri, Gayatri & Sethi, Vinod Krishna, 2011. "Critical analysis of methods for mathematical modelling of wind turbines," Renewable Energy, Elsevier, vol. 36(11), pages 3166-3177.
    19. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    20. Song, Jeonghun & Oh, Si-Doek & Yoo, Yungpil & Seo, Seok-Ho & Paek, Insu & Song, Yuan & Song, Seung Jin, 2018. "System design and policy suggestion for reducing electricity curtailment in renewable power systems for remote islands," Applied Energy, Elsevier, vol. 225(C), pages 195-208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:2473-2492:d:47504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.