IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i8p4972-4987d38795.html
   My bibliography  Save this article

Impact of Air Tightness on the Evaluation of Building Energy Performance in Lithuania

Author

Listed:
  • Jolanta Šadauskienė

    (Institute of Architecture and Construction, Kaunas University of Technology, Tunelio st. 60, LT-44405 Kaunas, Lithuania)

  • Valdas Paukštys

    (Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Studentų st. 48, LT-51367 Kaunas, Lithuania)

  • Lina Šeduikytė

    (Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Studentų st. 48, LT-51367 Kaunas, Lithuania)

  • Karolis Banionis

    (Institute of Architecture and Construction, Kaunas University of Technology, Tunelio st. 60, LT-44405 Kaunas, Lithuania)

Abstract

In order to fulfil the European Energy Performance of Buildings Directive (EPBD) requirements for the reduction of energy consumption, European national requirements have been created for building envelope thermal properties and calculation methodology to determine if building energy efficiency is created. This is however not true in all methodologies. The necessity of building air tightness appears only for new A class buildings, and there are no requirements for air tightness for other building classes. Therefore, the aim of this work is to improve the methodology for the calculation of energy efficiency of buildings, while taking into account the air tightness of the buildings. In order to achieve this aim, the sum energy consumption of investigated buildings was calculated, energy efficiency classes were determined, air tightness of the buildings was measured, and reasons for insufficient air tightness were analyzed. Investigation results show that the average value of air tightness of A energy efficiency class buildings is 0.6 h −1 . The results of other investigated buildings, corresponding to B and C energy efficiency classes, show insufficient air tightness (the average n 50 value is 6 h −1 ); herewith, energy consumption for heating is higher than calculated, according to the energy efficiency methodology. This paper provides an energy performance evaluation scheme, under which performed evaluation of energy performance of buildings ensures high quality construction work, building durability, and the reliability of heat-loss calculations.

Suggested Citation

  • Jolanta Šadauskienė & Valdas Paukštys & Lina Šeduikytė & Karolis Banionis, 2014. "Impact of Air Tightness on the Evaluation of Building Energy Performance in Lithuania," Energies, MDPI, vol. 7(8), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:8:p:4972-4987:d:38795
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/8/4972/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/8/4972/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andaloro, Antonio P.F. & Salomone, Roberta & Ioppolo, Giuseppe & Andaloro, Laura, 2010. "Energy certification of buildings: A comparative analysis of progress towards implementation in European countries," Energy Policy, Elsevier, vol. 38(10), pages 5840-5866, October.
    2. Miimu Airaksinen & Mika Vuolle, 2013. "Heating Energy and Peak-Power Demand in a Standard and Low Energy Building," Energies, MDPI, vol. 6(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto Meiss & Miguel Ángel Padilla-Marcos & Irene Poza-Casado & Antonio Álvaro-Tordesillas, 2020. "A Graphical Tool to Estimate the Air Change Efficiency in Rooms with Heat Recovery Systems," Sustainability, MDPI, vol. 12(3), pages 1-15, January.
    2. João Malça & Ricardo M. S. F. Almeida & José A. R. Mendes Silva, 2023. "Evaluation of the Hygrothermal Conditions of a Typical Residential Building in the Azores Archipelago," Energies, MDPI, vol. 16(13), pages 1-16, June.
    3. Alexander Martín-Garín & José Antonio Millán-García & Juan María Hidalgo-Betanzos & Rufino Javier Hernández-Minguillón & Abderrahmane Baïri, 2020. "Airtightness Analysis of the Built Heritage–Field Measurements of Nineteenth Century Buildings through Blower Door Tests," Energies, MDPI, vol. 13(24), pages 1-28, December.
    4. Miłosz Raczyński & Radosław Rutkowski, 2020. "How Pro-Environmental Legal Regulations Affect the Design Process and Management of Multi-Family Residential Buildings in Poland," Energies, MDPI, vol. 13(20), pages 1-23, October.
    5. Valdas Paukštys & Gintaris Cinelis & Jūratė Mockienė & Mindaugas Daukšys, 2021. "Airtightness and Heat Energy Loss of Mid-Size Terraced Houses Built of Different Construction Materials," Energies, MDPI, vol. 14(19), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    2. Francisco Sanhueza-Durán & José M. Gómez-Soberón & Claudia Valderrama-Ulloa & Felipe Ossio, 2019. "A Comparison of Energy Efficiency Certification in Housing: A Study of the Chilean and Spanish Cases," Sustainability, MDPI, vol. 11(17), pages 1-16, September.
    3. Dario Cottafava & Giulia Sonetti & Paolo Gambino & Andrea Tartaglino, 2018. "Explorative Multidimensional Analysis for Energy Efficiency: DataViz versus Clustering Algorithms," Energies, MDPI, vol. 11(5), pages 1-18, May.
    4. Antonio Attanasio & Marco Savino Piscitelli & Silvia Chiusano & Alfonso Capozzoli & Tania Cerquitelli, 2019. "Towards an Automated, Fast and Interpretable Estimation Model of Heating Energy Demand: A Data-Driven Approach Exploiting Building Energy Certificates," Energies, MDPI, vol. 12(7), pages 1-25, April.
    5. Annunziata, Eleonora & Frey, Marco & Rizzi, Francesco, 2013. "Towards nearly zero-energy buildings: The state-of-art of national regulations in Europe," Energy, Elsevier, vol. 57(C), pages 125-133.
    6. Duk Joon Park & Ki Hyung Yu & Yong Sang Yoon & Kee Han Kim & Sun Sook Kim, 2015. "Analysis of a Building Energy Efficiency Certification System in Korea," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    7. Kok, Nils & Jennen, Maarten, 2012. "The impact of energy labels and accessibility on office rents," Energy Policy, Elsevier, vol. 46(C), pages 489-497.
    8. Fouladvand, Javanshir, 2022. "Behavioural attributes towards collective energy security in thermal energy communities: Environmental-friendly behaviour matters," Energy, Elsevier, vol. 261(PB).
    9. Yeweon Kim & Ki-Hyung Yu, 2018. "Study on Policy Marking of Passive Level Insulation Standards for Non-Residential Buildings in South Korea," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    10. Franke, Melanie & Nadler, Claudia, 2019. "Energy efficiency in the German residential housing market: Its influence on tenants and owners," Energy Policy, Elsevier, vol. 128(C), pages 879-890.
    11. Min Ho Shin & Hwan Yong Kim & Donghwan Gu & Hyoungsub Kim, 2017. "LEED, Its Efficacy and Fallacy in a Regional Context—An Urban Heat Island Case in California," Sustainability, MDPI, vol. 9(9), pages 1-11, September.
    12. Verbeke, Stijn & Audenaert, Amaryllis, 2018. "Thermal inertia in buildings: A review of impacts across climate and building use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2300-2318.
    13. Dascalaki, E.G. & Balaras, C.A. & Gaglia, A.G. & Droutsa, K.G. & Kontoyiannidis, S., 2012. "Energy performance of buildings—EPBD in Greece," Energy Policy, Elsevier, vol. 45(C), pages 469-477.
    14. Younness EL Fouih & Amine Allouhi & Jamil Abdelmajid & Tarik Kousksou & Youssef Mourad, 2020. "Post Energy Audit of Two Mosques as a Case Study of Intermittent Occupancy Buildings: Toward more Sustainable Mosques," Sustainability, MDPI, vol. 12(23), pages 1-22, December.
    15. López-Ochoa, Luis M. & Las-Heras-Casas, Jesús & López-González, Luis M. & Olasolo-Alonso, Pablo, 2018. "Environmental and energy impact of the EPBD in residential buildings in hot and temperate Mediterranean zones: The case of Spain," Energy, Elsevier, vol. 161(C), pages 618-634.
    16. Rocco Curto & Elena Fregonara, 2019. "Monitoring and Analysis of the Real Estate Market in a Social Perspective: Results from the Turin’s (Italy) Experience," Sustainability, MDPI, vol. 11(11), pages 1-22, June.
    17. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    18. Mariana Huskinson & Antonio Galiano-Garrigós & Ángel Benigno González-Avilés & M. Isabel Pérez-Millán, 2021. "Decision-Making Processes in Controlling Exposure to Sunlight Supported by Simulation Tools: A Case Study in Warm Weather," Energies, MDPI, vol. 14(14), pages 1-30, July.
    19. Yeweon Kim & Ki-Hyung Yu, 2020. "Study on the Certification Policy of Zero-Energy Buildings in Korea," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    20. Salvalai, Graziano & Masera, Gabriele & Sesana, Marta Maria, 2015. "Italian local codes for energy efficiency of buildings: Theoretical definition and experimental application to a residential case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1245-1259.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:8:p:4972-4987:d:38795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.