IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i6p3781-3792d37195.html
   My bibliography  Save this article

Solar Air Collectors for Space Heating and Ventilation Applications—Performance and Case Studies under Romanian Climatic Conditions

Author

Listed:
  • Sanda Budea

    (Hydraulics, Hydraulic Machinery and Environmental Engineering Department, Power Engineering Faculty, University Politechnica of Bucharest, 313 Spl. Independentei, District 6, Bucharest 060042, Romania)

Abstract

Solar air collectors have various applications: on the one hand, they can be used for air heating in cold seasons; on the other hand they can be used in summer to evacuate the warm and polluted air from residential, offices, industrial, and commercial buildings. The paper presents experimental results of a solar collector air, under the climatic conditions of the Southeastern Europe. The relationships between the direct solar irradiation, the resulting heat flow, the air velocity at the outlet, the air flow rate, the nominal regime of the collector and the efficiency of conversion of solar energy into thermal energy are all highlighted. Thus, it was shown that after a maximum 50 min, solar air collectors, with baffles and double air passage can reach over 50% efficiency for solar irradiation of 900–1000 W/m 2 . The article also presents a mathematical model and the results of a computational program that allows sizing solar collectors for the transfer of air, with the purpose of improving the natural ventilation of buildings. The article is completed with case studies, sizing the area to be covered with solar collectors, to ensure ventilation of a house with two floors or for an office building. In addition, the ACH (air change per hour) coefficient was calculated and compared.

Suggested Citation

  • Sanda Budea, 2014. "Solar Air Collectors for Space Heating and Ventilation Applications—Performance and Case Studies under Romanian Climatic Conditions," Energies, MDPI, vol. 7(6), pages 1-12, June.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:6:p:3781-3792:d:37195
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/6/3781/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/6/3781/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sandberg, Mats & Moshfegh, Bahram, 1998. "Ventilated-solar roof air flow and heat transfer investigation," Renewable Energy, Elsevier, vol. 15(1), pages 287-292.
    2. Chan, Hoy-Yen & Riffat, Saffa B. & Zhu, Jie, 2010. "Review of passive solar heating and cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 781-789, February.
    3. Lanjewar, Atul & Bhagoria, J.L. & Sarviya, R.M., 2011. "Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate," Energy, Elsevier, vol. 36(7), pages 4531-4541.
    4. Hachemi, A., 1999. "Technical note Comparative study on the thermalperformances of solar air heater collectors with selectiveand nonselective absorber-plate," Renewable Energy, Elsevier, vol. 17(1), pages 103-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salma Benzaria & Ekaterina Mamontova & Yannick Guari & Joulia Larionova & Jérôme Long & Philippe Trens & Fabrice Salles & Jerzy Zajac, 2021. "Heat Release Kinetics upon Water Vapor Sorption Using Cation-Exchanged Zeolites and Prussian Blue Analogues as Adsorbents: Application to Short-Term Low-Temperature Thermochemical Storage of Energy," Energies, MDPI, vol. 14(12), pages 1-18, June.
    2. Sergio L. González-González & Ana Tejero-González & Francisco J. Rey-Martínez & Manuel Andrés-Chicote, 2017. "Alternative for Summer Use of Solar Air Heaters in Existing Buildings," Energies, MDPI, vol. 10(7), pages 1-15, July.
    3. Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "RSM approach for modeling and optimization of designing parameters for inclined fins of solar air heater," Renewable Energy, Elsevier, vol. 136(C), pages 48-68.
    4. Junichiro Matsunaga & Koki Kikuta & Hideki Hirakawa & Keita Mizuno & Masaki Tajima & Motoya Hayashi & Akira Fukushima, 2021. "An Assessment of Heating Load Reduction by a Solar Air Heater in a Residential Passive Ventilation System," Energies, MDPI, vol. 14(22), pages 1-12, November.
    5. Víctor Echarri-Iribarren & Carlos Rizo-Maestre & Fernando Echarri-Iribarren, 2018. "Healthy Climate and Energy Savings: Using Thermal Ceramic Panels and Solar Thermal Panels in Mediterranean Housing Blocks," Energies, MDPI, vol. 11(10), pages 1-32, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    2. Türk Togrul, İnci & Pehlιvan, Dursun & Akosman, Cevdet, 2004. "Development and testing of a solar air-heater with conical concentrator," Renewable Energy, Elsevier, vol. 29(2), pages 263-275.
    3. Tonui, J.K. & Tripanagnostopoulos, Y., 2007. "Improved PV/T solar collectors with heat extraction by forced or natural air circulation," Renewable Energy, Elsevier, vol. 32(4), pages 623-637.
    4. Sajad M.R. Khani & Mehdi N. Bahadori & Alireza Dehghani-Sanij & Ahmad Nourbakhsh, 2017. "Performance Evaluation of a Modular Design of Wind Tower with Wetted Surfaces," Energies, MDPI, vol. 10(7), pages 1-20, June.
    5. Jin, Dongxu & Zhang, Manman & Wang, Ping & Xu, Shasha, 2015. "Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 89(C), pages 178-190.
    6. Yang, Li & He, Bao-jie & Ye, Miao, 2014. "The application of solar technologies in building energy efficiency: BISE design in solar-powered residential buildings," Technology in Society, Elsevier, vol. 38(C), pages 111-118.
    7. Tomasz Szul & Krzysztof Nęcka & Stanisław Lis, 2021. "Application of the Takagi-Sugeno Fuzzy Modeling to Forecast Energy Efficiency in Real Buildings Undergoing Thermal Improvement," Energies, MDPI, vol. 14(7), pages 1-16, March.
    8. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Lee, Haksung & Ozaki, Akihito, 2018. "Sensitivity analysis for optimization of renewable-energy-based air-circulation-type temperature-control system," Applied Energy, Elsevier, vol. 230(C), pages 317-329.
    10. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    11. Gigliola Ausiello & Luca Di Girolamo & Antonio Marano, 2019. "Sustainable Requalification: Hemp, Raw Earth, Sun, and Wind for Energy Strategies in a Case Study in Naples, Italy," Sustainability, MDPI, vol. 11(21), pages 1-13, November.
    12. Rafael Herrera-Limones & Ángel Luis León-Rodríguez & Álvaro López-Escamilla, 2019. "Solar Decathlon Latin America and Caribbean: Comfort and the Balance between Passive and Active Design," Sustainability, MDPI, vol. 11(13), pages 1-17, June.
    13. Spanaki, Artemisia & Tsoutsos, Theocharis & Kolokotsa, Dionysia, 2011. "On the selection and design of the proper roof pond variant for passive cooling purposes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3523-3533.
    14. Singh Bisht, Vijay & Kumar Patil, Anil & Gupta, Anirudh, 2018. "Review and performance evaluation of roughened solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 954-977.
    15. Manzano-Agugliaro, Francisco & Montoya, Francisco G. & Sabio-Ortega, Andrés & García-Cruz, Amós, 2015. "Review of bioclimatic architecture strategies for achieving thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 736-755.
    16. Akpinar, Ebru Kavak & Koçyigit, Fatih, 2010. "Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates," Applied Energy, Elsevier, vol. 87(11), pages 3438-3450, November.
    17. Zeynab Emdadi & Nilofar Asim & Mohd Ambar Yarmo & Roslinda Shamsudin & Masita Mohammad & Kamaruzaman Sopian, 2016. "Green Material Prospects for Passive Evaporative Cooling Systems: Geopolymers," Energies, MDPI, vol. 9(8), pages 1-19, July.
    18. Zhang, Tiantian & Yang, Hongxing, 2019. "Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades," Applied Energy, Elsevier, vol. 242(C), pages 107-120.
    19. Zondag, H.A., 2008. "Flat-plate PV-Thermal collectors and systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 891-959, May.
    20. Varun Kumar, B. & Manikandan, G. & Rajesh Kanna, P., 2021. "Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD," Energy, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:6:p:3781-3792:d:37195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.