IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i4p2123-2145d34614.html
   My bibliography  Save this article

Effects of Degree of Superheat on the Running Performance of an Organic Rankine Cycle (ORC) Waste Heat Recovery System for Diesel Engines under Various Operating Conditions

Author

Listed:
  • Kai Yang

    (College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan No.100, Beijing 100124, China)

  • Hongguang Zhang

    (College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan No.100, Beijing 100124, China)

  • Songsong Song

    (College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan No.100, Beijing 100124, China
    Department of Automotive Engineering, Chengde Petroleum College, Chengde 067000, Hebei, China)

  • Fubin Yang

    (School of Mechanical and Power Engineering, North University of China, Taiyuan 030051, Shanxi, China)

  • Hao Liu

    (College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan No.100, Beijing 100124, China)

  • Guangyao Zhao

    (College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan No.100, Beijing 100124, China)

  • Jian Zhang

    (College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan No.100, Beijing 100124, China)

  • Baofeng Yao

    (College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan No.100, Beijing 100124, China)

Abstract

This study analyzed the variation law of engine exhaust energy under various operating conditions to improve the thermal efficiency and fuel economy of diesel engines. An organic Rankine cycle (ORC) waste heat recovery system with internal heat exchanger (IHE) was designed to recover waste heat from the diesel engine exhaust. The zeotropic mixture R416A was used as the working fluid for the ORC. Three evaluation indexes were presented as follows: waste heat recovery efficiency (WHRE), engine thermal efficiency increasing ratio (ETEIR), and output energy density of working fluid (OEDWF). In terms of various operating conditions of the diesel engine, this study investigated the variation tendencies of the running performances of the ORC waste heat recovery system and the effects of the degree of superheat on the running performance of the ORC waste heat recovery system through theoretical calculations. The research findings showed that the net power output, WHRE, and ETEIR of the ORC waste heat recovery system reach their maxima when the degree of superheat is 40 K, engine speed is 2200 r/min, and engine torque is 1200 N·m. OEDWF gradually increases with the increase in the degree of superheat, which indicates that the required mass flow rate of R416A decreases for a certain net power output, thereby significantly decreasing the risk of environmental pollution.

Suggested Citation

  • Kai Yang & Hongguang Zhang & Songsong Song & Fubin Yang & Hao Liu & Guangyao Zhao & Jian Zhang & Baofeng Yao, 2014. "Effects of Degree of Superheat on the Running Performance of an Organic Rankine Cycle (ORC) Waste Heat Recovery System for Diesel Engines under Various Operating Conditions," Energies, MDPI, vol. 7(4), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2123-2145:d:34614
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/4/2123/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/4/2123/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xunmin Ou & Xiaoyu Yan & Xu Zhang & Xiliang Zhang, 2013. "Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions," Energies, MDPI, vol. 6(9), pages 1-27, September.
    2. Heberle, Florian & Preißinger, Markus & Brüggemann, Dieter, 2012. "Zeotropic mixtures as working fluids in Organic Rankine Cycles for low-enthalpy geothermal resources," Renewable Energy, Elsevier, vol. 37(1), pages 364-370.
    3. Yu, Guopeng & Shu, Gequn & Tian, Hua & Wei, Haiqiao & Liu, Lina, 2013. "Simulation and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of diesel engine (DE)," Energy, Elsevier, vol. 51(C), pages 281-290.
    4. Li, Chennan & Besarati, Saeb & Goswami, Yogi & Stefanakos, Elias & Chen, Huijuan, 2013. "Reverse osmosis desalination driven by low temperature supercritical organic rankine cycle," Applied Energy, Elsevier, vol. 102(C), pages 1071-1080.
    5. Andrea Reverberi & Adriana Del Borghi & Vincenzo Dovì, 2011. "Optimal Design of Cogeneration Systems in Industrial Plants Combined with District Heating/Cooling and Underground Thermal Energy Storage," Energies, MDPI, vol. 4(12), pages 1-15, December.
    6. Hong Gao & Chao Liu & Chao He & Xiaoxiao Xu & Shuangying Wu & Yourong Li, 2012. "Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery," Energies, MDPI, vol. 5(9), pages 1-15, August.
    7. Yulia Glavatskaya & Pierre Podevin & Vincent Lemort & Osoko Shonda & Georges Descombes, 2012. "Reciprocating Expander for an Exhaust Heat Recovery Rankine Cycle for a Passenger Car Application," Energies, MDPI, vol. 5(6), pages 1-15, June.
    8. Mago, Pedro J. & Luck, Rogelio, 2013. "Evaluation of the potential use of a combined micro-turbine organic Rankine cycle for different geographic locations," Applied Energy, Elsevier, vol. 102(C), pages 1324-1333.
    9. Łukowicz, Henryk & Kochaniewicz, Andrzej, 2012. "Analysis of the use of waste heat obtained from coal-fired units in Organic Rankine Cycles and for brown coal drying," Energy, Elsevier, vol. 45(1), pages 203-212.
    10. Xi, Huan & Li, Ming-Jia & Xu, Chao & He, Ya-Ling, 2013. "Parametric optimization of regenerative organic Rankine cycle (ORC) for low grade waste heat recovery using genetic algorithm," Energy, Elsevier, vol. 58(C), pages 473-482.
    11. Li, You-Rong & Wang, Jian-Ning & Du, Mei-Tang, 2012. "Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle," Energy, Elsevier, vol. 42(1), pages 503-509.
    12. He, Ya-Ling & Mei, Dan-Hua & Tao, Wen-Quan & Yang, Wei-Wei & Liu, Huai-Liang, 2012. "Simulation of the parabolic trough solar energy generation system with Organic Rankine Cycle," Applied Energy, Elsevier, vol. 97(C), pages 630-641.
    13. Fu, Jianqin & Liu, Jingping & Ren, Chengqin & Wang, Linjun & Deng, Banglin & Xu, Zhengxin, 2012. "An open steam power cycle used for IC engine exhaust gas energy recovery," Energy, Elsevier, vol. 44(1), pages 544-554.
    14. Wang, Jiangfeng & Yan, Zhequan & Wang, Man & Ma, Shaolin & Dai, Yiping, 2013. "Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source," Energy, Elsevier, vol. 49(C), pages 356-365.
    15. Roy, J.P. & Misra, Ashok, 2012. "Parametric optimization and performance analysis of a regenerative Organic Rankine Cycle using R-123 for waste heat recovery," Energy, Elsevier, vol. 39(1), pages 227-235.
    16. Wang, J.L. & Zhao, L. & Wang, X.D., 2010. "A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle," Applied Energy, Elsevier, vol. 87(11), pages 3366-3373, November.
    17. Macián, V. & Serrano, J.R. & Dolz, V. & Sánchez, J., 2013. "Methodology to design a bottoming Rankine cycle, as a waste energy recovering system in vehicles. Study in a HDD engine," Applied Energy, Elsevier, vol. 104(C), pages 758-771.
    18. Jianhua Zhang & Jiancun Feng & Yeli Zhou & Fang Fang & Hong Yue, 2012. "Linear Active Disturbance Rejection Control of Waste Heat Recovery Systems with Organic Rankine Cycles," Energies, MDPI, vol. 5(12), pages 1-15, December.
    19. Clemente, Stefano & Micheli, Diego & Reini, Mauro & Taccani, Rodolfo, 2013. "Bottoming organic Rankine cycle for a small scale gas turbine: A comparison of different solutions," Applied Energy, Elsevier, vol. 106(C), pages 355-364.
    20. He, Maogang & Zhang, Xinxin & Zeng, Ke & Gao, Ke, 2011. "A combined thermodynamic cycle used for waste heat recovery of internal combustion engine," Energy, Elsevier, vol. 36(12), pages 6821-6829.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Tian & Yingying Yue & Yuan Zhang & Bo Gu & Wenzhong Gao, 2020. "Multi-Objective Thermo-Economic Optimization of a Combined Organic Rankine Cycle (ORC) System Based on Waste Heat of Dual Fuel Marine Engine and LNG Cold Energy Recovery," Energies, MDPI, vol. 13(6), pages 1-23, March.
    2. Yılmaz, Alper, 2015. "Transcritical organic Rankine vapor compression refrigeration system for intercity bus air-conditioning using engine exhaust heat," Energy, Elsevier, vol. 82(C), pages 1047-1056.
    3. Songsong Song & Hongguang Zhang & Rui Zhao & Fanxiao Meng & Hongda Liu & Jingfu Wang & Baofeng Yao, 2017. "Simulation and Performance Analysis of Organic Rankine Systems for Stationary Compressed Natural Gas Engine," Energies, MDPI, vol. 10(4), pages 1-23, April.
    4. Lisa Branchini & Andrea De Pascale & Francesco Melino & Noemi Torricelli, 2020. "Optimum Organic Rankine Cycle Design for the Application in a CHP Unit Feeding a District Heating Network," Energies, MDPI, vol. 13(6), pages 1-22, March.
    5. Yu-Ting Wu & Biao Lei & Chong-Fang Ma & Lei Zhao & Jing-Fu Wang & Hang Guo & Yuan-Wei Lu, 2014. "Study on the Characteristics of Expander Power Output Used for Offsetting Pumping Work Consumption in Organic Rankine Cycles," Energies, MDPI, vol. 7(8), pages 1-15, July.
    6. Andres Hernandez & Adriano Desideri & Clara Ionescu & Robin De Keyser & Vincent Lemort & Sylvain Quoilin, 2016. "Real-Time Optimization of Organic Rankine Cycle Systems by Extremum-Seeking Control," Energies, MDPI, vol. 9(5), pages 1-18, May.
    7. Hongjin Wang & Hongguang Zhang & Fubin Yang & Songsong Song & Ying Chang & Chen Bei & Kai Yang, 2015. "Parametric Optimization of Regenerative Organic Rankine Cycle System for Diesel Engine Based on Particle Swarm Optimization," Energies, MDPI, vol. 8(9), pages 1-26, September.
    8. Yang, Xufei & Xu, Jinliang & Miao, Zheng & Zou, Jinghuang & Yu, Chao, 2015. "Operation of an organic Rankine cycle dependent on pumping flow rates and expander torques," Energy, Elsevier, vol. 90(P1), pages 864-878.
    9. Ravi, Rajesh & Pachamuthu, Senthilkumar & Kasinathan, Padmanathan, 2020. "Computational and experimental investigation on effective utilization of waste heat from diesel engine exhaust using a fin protracted heat exchanger," Energy, Elsevier, vol. 200(C).
    10. Sung-Wei Hsu & Hsiao-Wei D. Chiang & Chih-Wei Yen, 2014. "Experimental Investigation of the Performance of a Hermetic Screw-Expander Organic Rankine Cycle," Energies, MDPI, vol. 7(9), pages 1-14, September.
    11. Markus Preißinger & Dieter Brüggemann, 2016. "Thermal Stability of Hexamethyldisiloxane (MM) for High-Temperature Organic Rankine Cycle (ORC)," Energies, MDPI, vol. 9(3), pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    2. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    3. Yang, Kai & Zhang, Hongguang & Wang, Zhen & Zhang, Jian & Yang, Fubin & Wang, Enhua & Yao, Baofeng, 2013. "Study of zeotropic mixtures of ORC (organic Rankine cycle) under engine various operating conditions," Energy, Elsevier, vol. 58(C), pages 494-510.
    4. Kai Yang & Hongguang Zhang & Songsong Song & Jian Zhang & Yuting Wu & Yeqiang Zhang & Hongjin Wang & Ying Chang & Chen Bei, 2014. "Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander," Energies, MDPI, vol. 7(5), pages 1-20, May.
    5. Yang, Fubin & Zhang, Hongguang & Bei, Chen & Song, Songsong & Wang, Enhua, 2015. "Parametric optimization and performance analysis of ORC (organic Rankine cycle) for diesel engine waste heat recovery with a fin-and-tube evaporator," Energy, Elsevier, vol. 91(C), pages 128-141.
    6. Hongjin Wang & Hongguang Zhang & Fubin Yang & Songsong Song & Ying Chang & Chen Bei & Kai Yang, 2015. "Parametric Optimization of Regenerative Organic Rankine Cycle System for Diesel Engine Based on Particle Swarm Optimization," Energies, MDPI, vol. 8(9), pages 1-26, September.
    7. Feng, Yongqiang & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery," Energy, Elsevier, vol. 82(C), pages 664-677.
    8. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    9. Yang, Fubin & Zhang, Hongguang & Yu, Zhibin & Wang, Enhua & Meng, Fanxiao & Liu, Hongda & Wang, Jingfu, 2017. "Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery," Energy, Elsevier, vol. 118(C), pages 753-775.
    10. Zhu, Sipeng & Deng, Kangyao & Qu, Shuan, 2014. "Thermodynamic analysis of an in-cylinder waste heat recovery system for internal combustion engines," Energy, Elsevier, vol. 67(C), pages 548-556.
    11. Li, Tailu & Zhang, Zhigang & Lu, Jian & Yang, Junlan & Hu, Yujie, 2015. "Two-stage evaporation strategy to improve system performance for organic Rankine cycle," Applied Energy, Elsevier, vol. 150(C), pages 323-334.
    12. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
    13. Li, Tailu & Wang, Qiulin & Zhu, Jialing & Hu, Kaiyong & Fu, Wencheng, 2015. "Thermodynamic optimization of organic Rankine cycle using two-stage evaporation," Renewable Energy, Elsevier, vol. 75(C), pages 654-664.
    14. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    15. Yu, Haoshui & Feng, Xiao & Wang, Yufei, 2015. "A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (Organic Rankine Cycle) recovering waste heat," Energy, Elsevier, vol. 90(P1), pages 36-46.
    16. Liu, Qiang & Shen, Aijing & Duan, Yuanyuan, 2015. "Parametric optimization and performance analyses of geothermal organic Rankine cycles using R600a/R601a mixtures as working fluids," Applied Energy, Elsevier, vol. 148(C), pages 410-420.
    17. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    18. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    19. Ge, Zhong & Wang, Hua & Wang, Hui-Tao & Wang, Jian-Jun & Li, Ming & Wu, Fu-Zhong & Zhang, Song-Yuan, 2015. "Main parameters optimization of regenerative organic Rankine cycle driven by low-temperature flue gas waste heat," Energy, Elsevier, vol. 93(P2), pages 1886-1895.
    20. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2123-2145:d:34614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.