IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i11p7305-7329d42281.html
   My bibliography  Save this article

An Integrated Energy-Efficient Operation Methodology for Metro Systems Based on a Real Case of Shanghai Metro Line One

Author

Listed:
  • Cheng Gong

    (Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China)

  • Shiwen Zhang

    (Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China)

  • Feng Zhang

    (Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China)

  • Jianguo Jiang

    (Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China)

  • Xinheng Wang

    (School of Engineering and Computing, University of the West of Scotland, Paisley PA1 2BE, Scotland, UK)

Abstract

Metro systems are one of the most important transportation systems in people’s lives. Due to the huge amount of energy it consumes every day, highly-efficient operation of a metro system will lead to significant energy savings. In this paper, a new integrated Energy-efficient Operation Methodology (EOM) for metro systems is proposed and validated. Compared with other energy saving methods, EOM does not incur additional cost. In addition, it provides solutions to the frequent disturbance problems in the metro systems. EOM can be divided into two parts: Timetable Optimization (TO) and Compensational Driving Strategy Algorithm (CDSA). First, to get a basic energy-saving effect, a genetic algorithm is used to modify the dwell time of each stop to obtain the most optimal energy-efficient timetable. Then, in order to save additional energy when disturbances happen, a novel CDSA algorithm is formulated and proposed based on the foregoing method. To validate the correctness and effectiveness of the energy-savings possible with EOM, a real case of Shanghai Metro Line One (SMLO) is studied, where EOM was applied. The result shows that a significant amount of energy can be saved by using EOM.

Suggested Citation

  • Cheng Gong & Shiwen Zhang & Feng Zhang & Jianguo Jiang & Xinheng Wang, 2014. "An Integrated Energy-Efficient Operation Methodology for Metro Systems Based on a Real Case of Shanghai Metro Line One," Energies, MDPI, vol. 7(11), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:11:p:7305-7329:d:42281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/11/7305/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/11/7305/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suzuki, Y. & Koyanagi, A. & Kobayashi, M. & Shimada, R., 2005. "Novel applications of the flywheel energy storage system," Energy, Elsevier, vol. 30(11), pages 2128-2143.
    2. Phil Howlett, 2000. "The Optimal Control of a Train," Annals of Operations Research, Springer, vol. 98(1), pages 65-87, December.
    3. Liu, Rongfang (Rachel) & Golovitcher, Iakov M., 2003. "Energy-efficient operation of rail vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 917-932, December.
    4. Li, Xiang & Lo, Hong K., 2014. "An energy-efficient scheduling and speed control approach for metro rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 73-89.
    5. Bolund, Björn & Bernhoff, Hans & Leijon, Mats, 2007. "Flywheel energy and power storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 235-258, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2016. "The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 482-508.
    2. Andreas Bärmann & Alexander Martin & Oskar Schneider, 2021. "Efficient Formulations and Decomposition Approaches for Power Peak Reduction in Railway Traffic via Timetabling," Transportation Science, INFORMS, vol. 55(3), pages 747-767, May.
    3. Youneng Huang & Xiao Ma & Shuai Su & Tao Tang, 2015. "Optimization of Train Operation in Multiple Interstations with Multi-Population Genetic Algorithm," Energies, MDPI, vol. 8(12), pages 1-19, December.
    4. Mulder, J. & van Jaarsveld, W.L. & Dekker, R., 2016. "Simultaneous optimization of speed and buffer times for robust transportation systems," Econometric Institute Research Papers EI2016-36, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Andreas Bärmann & Alexander Martin & Oskar Schneider, 2017. "A comparison of performance metrics for balancing the power consumption of trains in a railway network by slight timetable adaptation," Public Transport, Springer, vol. 9(1), pages 95-113, July.
    6. Fei Lin & Shihui Liu & Zhihong Yang & Yingying Zhao & Zhongping Yang & Hu Sun, 2016. "Multi-Train Energy Saving for Maximum Usage of Regenerative Energy by Dwell Time Optimization in Urban Rail Transit Using Genetic Algorithm," Energies, MDPI, vol. 9(3), pages 1-21, March.
    7. Petru Valentin Radu & Adam Szelag & Marcin Steczek, 2019. "On-Board Energy Storage Devices with Supercapacitors for Metro Trains—Case Study Analysis of Application Effectiveness," Energies, MDPI, vol. 12(7), pages 1-22, April.
    8. Judith Mulder & Willem van Jaarsveld & Rommert Dekker, 2019. "Simultaneous Optimization of Speed and Buffer Times with an Application to Liner Shipping," Transportation Science, INFORMS, vol. 53(2), pages 365-382, March.
    9. Bing Bu & Guoying Qin & Ling Li & Guojie Li, 2018. "An Energy Efficient Train Dispatch and Control Integrated Method in Urban Rail Transit," Energies, MDPI, vol. 11(5), pages 1-23, May.
    10. Shuai Su & Tao Tang & Yihui Wang, 2016. "Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model," Energies, MDPI, vol. 9(2), pages 1-19, February.
    11. Hongjie Liu & Tao Tang & Jidong Lv & Ming Chai, 2019. "A Dual-Objective Substation Energy Consumption Optimization Problem in Subway Systems," Energies, MDPI, vol. 12(10), pages 1-28, May.
    12. Yang, Xin & Chen, Anthony & Ning, Bin & Tang, Tao, 2016. "A stochastic model for the integrated optimization on metro timetable and speed profile with uncertain train mass," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 424-445.
    13. Franciszek Restel & Szymon Mateusz Haładyn, 2022. "The Railway Timetable Evaluation Method in Terms of Operational Robustness against Overloads of the Power Supply System," Energies, MDPI, vol. 15(17), pages 1-17, September.
    14. Artur Kierzkowski & Szymon Haładyn, 2022. "Method for Reconfiguring Train Schedules Taking into Account the Global Reduction of Railway Energy Consumption," Energies, MDPI, vol. 15(5), pages 1-18, March.
    15. Maria La Gennusa & Patrizia Ferrante & Barbara Lo Casto & Gianfranco Rizzo, 2015. "An Integrated Environmental Indicator for Urban Transportation Systems: Description and Application," Energies, MDPI, vol. 8(10), pages 1-19, October.
    16. Jia Feng & Xiamiao Li & Haidong Liu & Xing Gao & Baohua Mao, 2017. "Optimizing the Energy-Efficient Metro Train Timetable and Control Strategy in Off-Peak Hours with Uncertain Passenger Demands," Energies, MDPI, vol. 10(4), pages 1-20, March.
    17. Guang Yang & Feng Zhang & Cheng Gong & Shiwen Zhang, 2019. "Application of a Deep Deterministic Policy Gradient Algorithm for Energy-Aimed Timetable Rescheduling Problem," Energies, MDPI, vol. 12(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2016. "The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 482-508.
    2. Canca, David & Zarzo, Alejandro, 2017. "Design of energy-Efficient timetables in two-way railway rapid transit lines," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 142-161.
    3. Luan, Xiaojie & Wang, Yihui & De Schutter, Bart & Meng, Lingyun & Lodewijks, Gabriel & Corman, Francesco, 2018. "Integration of real-time traffic management and train control for rail networks - Part 2: Extensions towards energy-efficient train operations," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 72-94.
    4. Wang, Xuekai & Tang, Tao & Su, Shuai & Yin, Jiateng & Gao, Ziyou & Lv, Nan, 2021. "An integrated energy-efficient train operation approach based on the space-time-speed network methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    5. Ye, Hongbo & Liu, Ronghui, 2016. "A multiphase optimal control method for multi-train control and scheduling on railway lines," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 377-393.
    6. Gupta, Shuvomoy Das & Tobin, J. Kevin & Pavel, Lacra, 2016. "A two-step linear programming model for energy-efficient timetables in metro railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 57-74.
    7. Wang, Chao & Meng, Xin & Guo, Mingxue & Li, Hao & Hou, Zhiqiang, 2022. "An integrated energy-efficient and transfer-accessible model for the last train timetabling problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    8. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2018. "The two-train separation problem on non-level track—driving strategies that minimize total required tractive energy subject to prescribed section clearance times," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 135-167.
    9. Jie Yang & Limin Jia & Shaofeng Lu & Yunxiao Fu & Ji Ge, 2016. "Energy-Efficient Speed Profile Approximation: An Optimal Switching Region-Based Approach with Adaptive Resolution," Energies, MDPI, vol. 9(10), pages 1-27, September.
    10. Scheepmaker, Gerben M. & Goverde, Rob M.P. & Kroon, Leo G., 2017. "Review of energy-efficient train control and timetabling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 355-376.
    11. Wang, Pengling & Goverde, Rob M.P., 2019. "Multi-train trajectory optimization for energy-efficient timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 621-635.
    12. Yang, Xin & Chen, Anthony & Ning, Bin & Tang, Tao, 2016. "A stochastic model for the integrated optimization on metro timetable and speed profile with uncertain train mass," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 424-445.
    13. Haahr, Jørgen Thorlund & Pisinger, David & Sabbaghian, Mohammad, 2017. "A dynamic programming approach for optimizing train speed profiles with speed restrictions and passage points," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 167-182.
    14. Zhaoxiang Tan & Shaofeng Lu & Kai Bao & Shaoning Zhang & Chaoxian Wu & Jie Yang & Fei Xue, 2018. "Adaptive Partial Train Speed Trajectory Optimization," Energies, MDPI, vol. 11(12), pages 1-33, November.
    15. Howlett, Phil, 2016. "A new look at the rate of change of energy consumption with respect to journey time on an optimal train journey," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 387-408.
    16. Fei Lin & Shihui Liu & Zhihong Yang & Yingying Zhao & Zhongping Yang & Hu Sun, 2016. "Multi-Train Energy Saving for Maximum Usage of Regenerative Energy by Dwell Time Optimization in Urban Rail Transit Using Genetic Algorithm," Energies, MDPI, vol. 9(3), pages 1-21, March.
    17. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    18. Xiaowen Wang & Zhuang Xiao & Mo Chen & Pengfei Sun & Qingyuan Wang & Xiaoyun Feng, 2020. "Energy-Efficient Speed Profile Optimization and Sliding Mode Speed Tracking for Metros," Energies, MDPI, vol. 13(22), pages 1-29, November.
    19. Luijt, Ralph S. & van den Berge, Maarten P.F. & Willeboordse, Helen Y. & Hoogenraad, Jan H., 2017. "5years of Dutch eco-driving: Managing behavioural change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 46-63.
    20. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2016. "The key principles of optimal train control—Part 2: Existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniques," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 509-538.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:11:p:7305-7329:d:42281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.