IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v2y2009i2p307-319d5094.html
   My bibliography  Save this article

Global Assessment of High-Altitude Wind Power

Author

Listed:
  • Cristina L. Archer

    (Department of Geological and Environmental Sciences, California State University – Chico, Chico, CA 95929, USA)

  • Ken Caldeira

    (Department of Global Ecology, Carnegie Institution of Washington, Stanford, CA 94305, USA)

Abstract

The available wind power resource worldwide at altitudes between 500 and 12,000 m above ground is assessed for the first time. Twenty-eight years of wind data from the reanalyses by the National Centers for Environmental Prediction and the Department of Energy are analyzed and interpolated to study geographical distributions and persistency of winds at all altitudes. Furthermore, intermittency issues and global climate effects of large-scale extraction of energy from high-altitude winds are investigated.

Suggested Citation

  • Cristina L. Archer & Ken Caldeira, 2009. "Global Assessment of High-Altitude Wind Power," Energies, MDPI, vol. 2(2), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:2:y:2009:i:2:p:307-319:d:5094
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/2/2/307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/2/2/307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Argatov, I. & Rautakorpi, P. & Silvennoinen, R., 2009. "Estimation of the mechanical energy output of the kite wind generator," Renewable Energy, Elsevier, vol. 34(6), pages 1525-1532.
    2. Canale, M. & Fagiano, L. & Milanese, M., 2009. "KiteGen: A revolution in wind energy generation," Energy, Elsevier, vol. 34(3), pages 355-361.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyu Long & Mingwei Sun & Minnan Piao & Zengqiang Chen, 2021. "Parameterized Trajectory Optimization and Tracking Control of High Altitude Parafoil Generation," Energies, MDPI, vol. 14(22), pages 1-20, November.
    2. Cherubini, Antonello & Papini, Andrea & Vertechy, Rocco & Fontana, Marco, 2015. "Airborne Wind Energy Systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1461-1476.
    3. Jangid, Jayant & Bera, Apurba Kumar & Joseph, Manoj & Singh, Vishal & Singh, T.P. & Pradhan, B.K. & Das, Sandipan, 2016. "Potential zones identification for harvesting wind energy resources in desert region of India – A multi criteria evaluation approach using remote sensing and GIS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1-10.
    4. Ali, Qazi Shahzad & Kim, Man-Hoe, 2021. "Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting," Energy, Elsevier, vol. 230(C).
    5. Anny Key de Souza Mendonça & Caroline Rodrigues Vaz & Álvaro Guillermo Rojas Lezana & Cristiane Alves Anacleto & Edson Pacheco Paladini, 2017. "Comparing Patent and Scientific Literature in Airborne Wind Energy," Sustainability, MDPI, vol. 9(6), pages 1-22, May.
    6. Péter Kiss & László Varga & Imre M. Jánosi, 2009. "Contrasting Electricity Demand with Wind Power Supply: Case Study in Hungary," Energies, MDPI, vol. 2(4), pages 1-12, September.
    7. Archer, Cristina L. & Delle Monache, Luca & Rife, Daran L., 2014. "Airborne wind energy: Optimal locations and variability," Renewable Energy, Elsevier, vol. 64(C), pages 180-186.
    8. Ugo Bardi, 2016. "What Future for the Anthropocene? A Biophysical Interpretation," Biophysical Economics and Resource Quality, Springer, vol. 1(1), pages 1-7, August.
    9. Ali Arshad Uppal & Manuel C. R. M. Fernandes & Sérgio Vinha & Fernando A. C. C. Fontes, 2021. "Cascade Control of the Ground Station Module of an Airborne Wind Energy System," Energies, MDPI, vol. 14(24), pages 1-25, December.
    10. Chadee, Xsitaaz T. & Clarke, Ricardo M., 2014. "Large-scale wind energy potential of the Caribbean region using near-surface reanalysis data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 45-58.
    11. Bechtle, Philip & Schelbergen, Mark & Schmehl, Roland & Zillmann, Udo & Watson, Simon, 2019. "Airborne wind energy resource analysis," Renewable Energy, Elsevier, vol. 141(C), pages 1103-1116.
    12. Manuel C. R. M. Fernandes & Sérgio Vinha & Luís Tiago Paiva & Fernando A. C. C. Fontes, 2022. "L 0 and L 1 Guidance and Path-Following Control for Airborne Wind Energy Systems," Energies, MDPI, vol. 15(4), pages 1-16, February.
    13. Coleman, J. & Ahmad, H. & Pican, E. & Toal, D., 2014. "Modelling of a synchronous offshore pumping mode airborne wind energy farm," Energy, Elsevier, vol. 71(C), pages 569-578.
    14. de Castro, Carlos & Mediavilla, Margarita & Miguel, Luis Javier & Frechoso, Fernando, 2011. "Global wind power potential: Physical and technological limits," Energy Policy, Elsevier, vol. 39(10), pages 6677-6682, October.
    15. Perković, Luka & Silva, Pedro & Ban, Marko & Kranjčević, Nenad & Duić, Neven, 2013. "Harvesting high altitude wind energy for power production: The concept based on Magnus’ effect," Applied Energy, Elsevier, vol. 101(C), pages 151-160.
    16. Argatov, Ivan & Shafranov, Valentin, 2016. "Economic assessment of small-scale kite wind generators," Renewable Energy, Elsevier, vol. 89(C), pages 125-134.
    17. Lunney, E. & Ban, M. & Duic, N. & Foley, A., 2017. "A state-of-the-art review and feasibility analysis of high altitude wind power in Northern Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 899-911.
    18. Shahzad Ali, Qazi & Kim, Man-Hoe, 2022. "Quantifying impacts of shell augmentation on power output of airborne wind energy system at elevated heights," Energy, Elsevier, vol. 239(PA).
    19. Fagiano, L. & Schnez, S., 2017. "On the take-off of airborne wind energy systems based on rigid wings," Renewable Energy, Elsevier, vol. 107(C), pages 473-488.
    20. Helena Schmidt & Gerdien de Vries & Reint Jan Renes & Roland Schmehl, 2022. "The Social Acceptance of Airborne Wind Energy: A Literature Review," Energies, MDPI, vol. 15(4), pages 1-24, February.
    21. De Lellis, M. & Mendonça, A.K. & Saraiva, R. & Trofino, A. & Lezana, Á., 2016. "Electric power generation in wind farms with pumping kites: An economical analysis," Renewable Energy, Elsevier, vol. 86(C), pages 163-172.
    22. Ban, Marko & Perković, Luka & Duić, Neven & Penedo, Ricardo, 2013. "Estimating the spatial distribution of high altitude wind energy potential in Southeast Europe," Energy, Elsevier, vol. 57(C), pages 24-29.
    23. Castellani, Francesco & Garinei, Alberto, 2013. "On the way to harness high-altitude wind power: Defining the operational asset for an airship wind generator," Applied Energy, Elsevier, vol. 112(C), pages 592-600.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cherubini, Antonello & Papini, Andrea & Vertechy, Rocco & Fontana, Marco, 2015. "Airborne Wind Energy Systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1461-1476.
    2. Argatov, Ivan & Shafranov, Valentin, 2016. "Economic assessment of small-scale kite wind generators," Renewable Energy, Elsevier, vol. 89(C), pages 125-134.
    3. Goldstein, Leo, 2013. "Theoretical analysis of an airborne wind energy conversion system with a ground generator and fast motion transfer," Energy, Elsevier, vol. 55(C), pages 987-995.
    4. Saleem, Arslan & Kim, Man-Hoe, 2019. "Performance of buoyant shell horizontal axis wind turbine under fluctuating yaw angles," Energy, Elsevier, vol. 169(C), pages 79-91.
    5. Perković, Luka & Silva, Pedro & Ban, Marko & Kranjčević, Nenad & Duić, Neven, 2013. "Harvesting high altitude wind energy for power production: The concept based on Magnus’ effect," Applied Energy, Elsevier, vol. 101(C), pages 151-160.
    6. Coleman, J. & Ahmad, H. & Pican, E. & Toal, D., 2014. "Modelling of a synchronous offshore pumping mode airborne wind energy farm," Energy, Elsevier, vol. 71(C), pages 569-578.
    7. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Lunney, E. & Ban, M. & Duic, N. & Foley, A., 2017. "A state-of-the-art review and feasibility analysis of high altitude wind power in Northern Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 899-911.
    9. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    10. Archer, Cristina L. & Delle Monache, Luca & Rife, Daran L., 2014. "Airborne wind energy: Optimal locations and variability," Renewable Energy, Elsevier, vol. 64(C), pages 180-186.
    11. Singh, G.K. & Senthil Kumar, A. & Saini, R.P., 2010. "Selection of capacitance for self-excited six-phase induction generator for stand-alone renewable energy generation," Energy, Elsevier, vol. 35(8), pages 3273-3283.
    12. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    13. Ban, Marko & Perković, Luka & Duić, Neven & Penedo, Ricardo, 2013. "Estimating the spatial distribution of high altitude wind energy potential in Southeast Europe," Energy, Elsevier, vol. 57(C), pages 24-29.
    14. Alvarez, A. & Cabeza, O. & Muñiz, M.C. & Varela, L.M., 2010. "Experimental and numerical investigation of a flat-plate solar collector," Energy, Elsevier, vol. 35(9), pages 3707-3716.
    15. Paul Thedens & Roland Schmehl, 2023. "An Aero-Structural Model for Ram-Air Kite Simulations," Energies, MDPI, vol. 16(6), pages 1-18, March.
    16. Ali, Qazi Shahzad & Kim, Man-Hoe, 2021. "Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting," Energy, Elsevier, vol. 230(C).
    17. André F. C. Pereira & João M. M. Sousa, 2022. "A Review on Crosswind Airborne Wind Energy Systems: Key Factors for a Design Choice," Energies, MDPI, vol. 16(1), pages 1-40, December.
    18. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    19. Juliane Müller & Christine Shoemaker, 2014. "Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems," Journal of Global Optimization, Springer, vol. 60(2), pages 123-144, October.
    20. Jiang, Wenchun & Fan, Qinshan & Gong, Jianming, 2010. "Optimization of welding joint between tower and bottom flange based on residual stress considerations in a wind turbine," Energy, Elsevier, vol. 35(1), pages 461-467.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:2:y:2009:i:2:p:307-319:d:5094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.