IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v64y2014icp180-186.html
   My bibliography  Save this article

Airborne wind energy: Optimal locations and variability

Author

Listed:
  • Archer, Cristina L.
  • Delle Monache, Luca
  • Rife, Daran L.

Abstract

This paper explores the global wind power potential of Airborne Wind Energy (AWE), a relatively new branch of renewable energy that utilizes airborne tethered devices to generate electricity from the wind. Unlike wind turbines mounted on towers, AWE systems can be automatically raised and lowered to the height of maximum wind speeds, thereby providing a more temporally consistent power production. Most locations on Earth have significant power production potential above the height of conventional turbines. The ideal candidates for AWE farms, however, are where temporally consistent and high wind speeds are found at the lowest possible altitudes, to minimize the drag induced by the tether. A criterion is introduced to identify and characterize regions with wind speeds in excess of 10 m s−1 occurring at least 15% of the time in each month for heights below 3000 m AGL. These features exhibit a jet-like profile with remarkable temporal constancy in many locations and are termed here “wind speed maxima” to distinguish them from diurnally varying low-level jets. Their properties are investigated using global, 40 km-resolution, hourly reanalyses from the National Center for Atmospheric Research's Climate Four Dimensional Data Assimilation, performed over the 1985–2005 period. These wind speed maxima are more ubiquitous than previously thought and can have extraordinarily high wind power densities (up to 15,000 W m−2). Three notable examples are the U.S. Great Plains, the oceanic regions near the descending branches of the Hadley cells, and the Somali jet offshore of the horn of Africa. If an intermediate number of AWE systems per unit of land area could be deployed at all locations exhibiting wind speed maxima, without accounting for possible climatic feedbacks or landuse conflicts, then several terawatts of electric power (1 TW = 1012 W) could be generated, more than enough to provide electricity to all of humanity.

Suggested Citation

  • Archer, Cristina L. & Delle Monache, Luca & Rife, Daran L., 2014. "Airborne wind energy: Optimal locations and variability," Renewable Energy, Elsevier, vol. 64(C), pages 180-186.
  • Handle: RePEc:eee:renene:v:64:y:2014:i:c:p:180-186
    DOI: 10.1016/j.renene.2013.10.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113005752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.10.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Canale, M. & Fagiano, L. & Milanese, M., 2009. "KiteGen: A revolution in wind energy generation," Energy, Elsevier, vol. 34(3), pages 355-361.
    2. Cristina L. Archer & Ken Caldeira, 2009. "Global Assessment of High-Altitude Wind Power," Energies, MDPI, vol. 2(2), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bechtle, Philip & Schelbergen, Mark & Schmehl, Roland & Zillmann, Udo & Watson, Simon, 2019. "Airborne wind energy resource analysis," Renewable Energy, Elsevier, vol. 141(C), pages 1103-1116.
    2. Mahdi Ebrahimi Salari & Joseph Coleman & Daniel Toal, 2018. "Power Control of Direct Interconnection Technique for Airborne Wind Energy Systems," Energies, MDPI, vol. 11(11), pages 1-17, November.
    3. Malz, E.C. & Hedenus, F. & Göransson, L. & Verendel, V. & Gros, S., 2020. "Drag-mode airborne wind energy vs. wind turbines: An analysis of power production, variability and geography," Energy, Elsevier, vol. 193(C).
    4. Argatov, Ivan & Shafranov, Valentin, 2016. "Economic assessment of small-scale kite wind generators," Renewable Energy, Elsevier, vol. 89(C), pages 125-134.
    5. Lunney, E. & Ban, M. & Duic, N. & Foley, A., 2017. "A state-of-the-art review and feasibility analysis of high altitude wind power in Northern Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 899-911.
    6. Jochem De Schutter & Rachel Leuthold & Thilo Bronnenmeyer & Elena Malz & Sebastien Gros & Moritz Diehl, 2023. "AWEbox : An Optimal Control Framework for Single- and Multi-Aircraft Airborne Wind Energy Systems," Energies, MDPI, vol. 16(4), pages 1-32, February.
    7. De Lellis, M. & Mendonça, A.K. & Saraiva, R. & Trofino, A. & Lezana, Á., 2016. "Electric power generation in wind farms with pumping kites: An economical analysis," Renewable Energy, Elsevier, vol. 86(C), pages 163-172.
    8. Fechner, Uwe & van der Vlugt, Rolf & Schreuder, Edwin & Schmehl, Roland, 2015. "Dynamic model of a pumping kite power system," Renewable Energy, Elsevier, vol. 83(C), pages 705-716.
    9. Coleman, J. & Ahmad, H. & Pican, E. & Toal, D., 2014. "Modelling of a synchronous offshore pumping mode airborne wind energy farm," Energy, Elsevier, vol. 71(C), pages 569-578.
    10. Kazemi, Seyed Ali & Nili-Ahmadabadi, Mahdi & Sedaghat, Ahmad & Saghafian, Mohsen, 2016. "Aerodynamic performance of a circulating airfoil section for Magnus systems via numerical simulation and flow visualization," Energy, Elsevier, vol. 104(C), pages 1-15.
    11. Fagiano, L. & Schnez, S., 2017. "On the take-off of airborne wind energy systems based on rigid wings," Renewable Energy, Elsevier, vol. 107(C), pages 473-488.
    12. Helena Schmidt & Gerdien de Vries & Reint Jan Renes & Roland Schmehl, 2022. "The Social Acceptance of Airborne Wind Energy: A Literature Review," Energies, MDPI, vol. 15(4), pages 1-24, February.
    13. Malz, E.C. & Verendel, V. & Gros, S., 2020. "Computing the power profiles for an Airborne Wind Energy system based on large-scale wind data," Renewable Energy, Elsevier, vol. 162(C), pages 766-778.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cherubini, Antonello & Papini, Andrea & Vertechy, Rocco & Fontana, Marco, 2015. "Airborne Wind Energy Systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1461-1476.
    2. Argatov, Ivan & Shafranov, Valentin, 2016. "Economic assessment of small-scale kite wind generators," Renewable Energy, Elsevier, vol. 89(C), pages 125-134.
    3. Perković, Luka & Silva, Pedro & Ban, Marko & Kranjčević, Nenad & Duić, Neven, 2013. "Harvesting high altitude wind energy for power production: The concept based on Magnus’ effect," Applied Energy, Elsevier, vol. 101(C), pages 151-160.
    4. Castellani, Francesco & Garinei, Alberto, 2013. "On the way to harness high-altitude wind power: Defining the operational asset for an airship wind generator," Applied Energy, Elsevier, vol. 112(C), pages 592-600.
    5. Coleman, J. & Ahmad, H. & Pican, E. & Toal, D., 2014. "Modelling of a synchronous offshore pumping mode airborne wind energy farm," Energy, Elsevier, vol. 71(C), pages 569-578.
    6. Lunney, E. & Ban, M. & Duic, N. & Foley, A., 2017. "A state-of-the-art review and feasibility analysis of high altitude wind power in Northern Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 899-911.
    7. Ali Arshad Uppal & Manuel C. R. M. Fernandes & Sérgio Vinha & Fernando A. C. C. Fontes, 2021. "Cascade Control of the Ground Station Module of an Airborne Wind Energy System," Energies, MDPI, vol. 14(24), pages 1-25, December.
    8. Singh, G.K. & Senthil Kumar, A. & Saini, R.P., 2010. "Selection of capacitance for self-excited six-phase induction generator for stand-alone renewable energy generation," Energy, Elsevier, vol. 35(8), pages 3273-3283.
    9. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    10. Ali, Qazi Shahzad & Kim, Man-Hoe, 2021. "Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting," Energy, Elsevier, vol. 230(C).
    11. Anny Key de Souza Mendonça & Caroline Rodrigues Vaz & Álvaro Guillermo Rojas Lezana & Cristiane Alves Anacleto & Edson Pacheco Paladini, 2017. "Comparing Patent and Scientific Literature in Airborne Wind Energy," Sustainability, MDPI, vol. 9(6), pages 1-22, May.
    12. Jiang, Wenchun & Fan, Qinshan & Gong, Jianming, 2010. "Optimization of welding joint between tower and bottom flange based on residual stress considerations in a wind turbine," Energy, Elsevier, vol. 35(1), pages 461-467.
    13. Singh, G.K., 2011. "Modeling and analysis of six-phase synchronous generator for stand-alone renewable energy generation," Energy, Elsevier, vol. 36(9), pages 5621-5631.
    14. De Lellis, M. & Mendonça, A.K. & Saraiva, R. & Trofino, A. & Lezana, Á., 2016. "Electric power generation in wind farms with pumping kites: An economical analysis," Renewable Energy, Elsevier, vol. 86(C), pages 163-172.
    15. Fagiano, L. & Schnez, S., 2017. "On the take-off of airborne wind energy systems based on rigid wings," Renewable Energy, Elsevier, vol. 107(C), pages 473-488.
    16. Helena Schmidt & Gerdien de Vries & Reint Jan Renes & Roland Schmehl, 2022. "The Social Acceptance of Airborne Wind Energy: A Literature Review," Energies, MDPI, vol. 15(4), pages 1-24, February.
    17. Xinyu Long & Mingwei Sun & Minnan Piao & Zengqiang Chen, 2021. "Parameterized Trajectory Optimization and Tracking Control of High Altitude Parafoil Generation," Energies, MDPI, vol. 14(22), pages 1-20, November.
    18. Shahzad Ali, Qazi & Kim, Man-Hoe, 2022. "Quantifying impacts of shell augmentation on power output of airborne wind energy system at elevated heights," Energy, Elsevier, vol. 239(PA).
    19. Bechtle, Philip & Schelbergen, Mark & Schmehl, Roland & Zillmann, Udo & Watson, Simon, 2019. "Airborne wind energy resource analysis," Renewable Energy, Elsevier, vol. 141(C), pages 1103-1116.
    20. Ban, Marko & Perković, Luka & Duić, Neven & Penedo, Ricardo, 2013. "Estimating the spatial distribution of high altitude wind energy potential in Southeast Europe," Energy, Elsevier, vol. 57(C), pages 24-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:64:y:2014:i:c:p:180-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.