IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p351-d1017993.html
   My bibliography  Save this article

A Review on Crosswind Airborne Wind Energy Systems: Key Factors for a Design Choice

Author

Listed:
  • André F. C. Pereira

    (IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

  • João M. M. Sousa

    (IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

Abstract

Airborne wind energy (AWE) has received increasing attention during the last decade, with the goal of achieving electricity generation solutions that may be used as a complement or even an alternative to conventional wind turbines. Despite that several concepts have already been proposed and investigated by several companies and research institutions, no mature technology exists as yet. The mode of energy generation, the type of wing, the take-off and landing approaches, and the control mechanisms, to name a few, may vary among AWE crosswind systems. Given the diversity of possibilities, it is necessary to determine the most relevant factors that drive AWE exploration. This paper presents a review on the characteristics of currently existing AWE technological solutions, focusing on the hardware architecture of crosswind systems, with the purpose of providing the information required to identify and assess key factors to be considered in the choice of such systems. The identified factors are categorized into four distinct classes: technical design factors (aerodynamic performance, mass-to-area ratio, durability, survivability); operational factors (continuity of power production, controllability, take-off and landing feasibility); fabrication and logistical factors (manufacturability, logistics); and social acceptability factors (visual impact, noise impact, ecological impact, safety).

Suggested Citation

  • André F. C. Pereira & João M. M. Sousa, 2022. "A Review on Crosswind Airborne Wind Energy Systems: Key Factors for a Design Choice," Energies, MDPI, vol. 16(1), pages 1-40, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:351-:d:1017993
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/351/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/351/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bauer, Florian & Kennel, Ralph M. & Hackl, Christoph M. & Campagnolo, Filippo & Patt, Michael & Schmehl, Roland, 2018. "Drag power kite with very high lift coefficient," Renewable Energy, Elsevier, vol. 118(C), pages 290-305.
    2. Fagiano, L. & Schnez, S., 2017. "On the take-off of airborne wind energy systems based on rigid wings," Renewable Energy, Elsevier, vol. 107(C), pages 473-488.
    3. Axelle Viré & Geert Lebesque & Mikko Folkersma & Roland Schmehl, 2022. "Effect of Chordwise Struts and Misaligned Flow on the Aerodynamic Performance of a Leading-Edge Inflatable Wing," Energies, MDPI, vol. 15(4), pages 1-15, February.
    4. Coleman, J. & Ahmad, H. & Pican, E. & Toal, D., 2014. "Modelling of a synchronous offshore pumping mode airborne wind energy farm," Energy, Elsevier, vol. 71(C), pages 569-578.
    5. Goldstein, Leo, 2013. "Theoretical analysis of an airborne wind energy conversion system with a ground generator and fast motion transfer," Energy, Elsevier, vol. 55(C), pages 987-995.
    6. Licitra, G. & Koenemann, J. & Bürger, A. & Williams, P. & Ruiterkamp, R. & Diehl, M., 2019. "Performance assessment of a rigid wing Airborne Wind Energy pumping system," Energy, Elsevier, vol. 173(C), pages 569-585.
    7. Silke van der Burg & Maarten F. M. Jurg & Flore M. Tadema & Linda M. Kamp & Geerten van de Kaa, 2022. "Dominant Designs for Wings of Airborne Wind Energy Systems," Energies, MDPI, vol. 15(19), pages 1-11, October.
    8. Cherubini, Antonello & Papini, Andrea & Vertechy, Rocco & Fontana, Marco, 2015. "Airborne Wind Energy Systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1461-1476.
    9. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    10. Helena Schmidt & Gerdien de Vries & Reint Jan Renes & Roland Schmehl, 2022. "The Social Acceptance of Airborne Wind Energy: A Literature Review," Energies, MDPI, vol. 15(4), pages 1-24, February.
    11. Argatov, I. & Rautakorpi, P. & Silvennoinen, R., 2009. "Estimation of the mechanical energy output of the kite wind generator," Renewable Energy, Elsevier, vol. 34(6), pages 1525-1532.
    12. Kate Marvel & Ben Kravitz & Ken Caldeira, 2013. "Geophysical limits to global wind power," Nature Climate Change, Nature, vol. 3(2), pages 118-121, February.
    13. De Lellis, Marcelo & Reginatto, Romeu & Saraiva, Ramiro & Trofino, Alexandre, 2018. "The Betz limit applied to Airborne Wind Energy," Renewable Energy, Elsevier, vol. 127(C), pages 32-40.
    14. Anny Key de Souza Mendonça & Caroline Rodrigues Vaz & Álvaro Guillermo Rojas Lezana & Cristiane Alves Anacleto & Edson Pacheco Paladini, 2017. "Comparing Patent and Scientific Literature in Airborne Wind Energy," Sustainability, MDPI, vol. 9(6), pages 1-22, May.
    15. Bechtle, Philip & Schelbergen, Mark & Schmehl, Roland & Zillmann, Udo & Watson, Simon, 2019. "Airborne wind energy resource analysis," Renewable Energy, Elsevier, vol. 141(C), pages 1103-1116.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    2. Mostafa A. Rushdi & Ahmad A. Rushdi & Tarek N. Dief & Amr M. Halawa & Shigeo Yoshida & Roland Schmehl, 2020. "Power Prediction of Airborne Wind Energy Systems Using Multivariate Machine Learning," Energies, MDPI, vol. 13(9), pages 1-23, May.
    3. Malz, E.C. & Hedenus, F. & Göransson, L. & Verendel, V. & Gros, S., 2020. "Drag-mode airborne wind energy vs. wind turbines: An analysis of power production, variability and geography," Energy, Elsevier, vol. 193(C).
    4. Trevisi, Filippo & Gaunaa, Mac & McWilliam, Michael, 2020. "Unified engineering models for the performance and cost of Ground-Gen and Fly-Gen crosswind Airborne Wind Energy Systems," Renewable Energy, Elsevier, vol. 162(C), pages 893-907.
    5. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    6. Trevisi, Filippo & McWilliam, Michael & Gaunaa, Mac, 2021. "Configuration optimization and global sensitivity analysis of Ground-Gen and Fly-Gen Airborne Wind Energy Systems," Renewable Energy, Elsevier, vol. 178(C), pages 385-402.
    7. Saleem, Arslan & Kim, Man-Hoe, 2019. "Performance of buoyant shell horizontal axis wind turbine under fluctuating yaw angles," Energy, Elsevier, vol. 169(C), pages 79-91.
    8. Ali Arshad Uppal & Manuel C. R. M. Fernandes & Sérgio Vinha & Fernando A. C. C. Fontes, 2021. "Cascade Control of the Ground Station Module of an Airborne Wind Energy System," Energies, MDPI, vol. 14(24), pages 1-25, December.
    9. Ali, Qazi Shahzad & Kim, Man-Hoe, 2021. "Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting," Energy, Elsevier, vol. 230(C).
    10. Sridhar, Surya & Zuber, Mohammad & B., Satish Shenoy & Kumar, Amit & Ng, Eddie Y.K. & Radhakrishnan, Jayakrishnan, 2022. "Aerodynamic comparison of slotted and non-slotted diffuser casings for Diffuser Augmented Wind Turbines (DAWT)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Roystan Vijay Castelino & Pankaj Kumar & Yashwant Kashyap & Anabalagan Karthikeyan & Manjunatha Sharma K. & Debabrata Karmakar & Panagiotis Kosmopoulos, 2023. "Exploring the Potential of Kite-Based Wind Power Generation: An Emulation-Based Approach," Energies, MDPI, vol. 16(13), pages 1-22, July.
    12. Bechtle, Philip & Schelbergen, Mark & Schmehl, Roland & Zillmann, Udo & Watson, Simon, 2019. "Airborne wind energy resource analysis," Renewable Energy, Elsevier, vol. 141(C), pages 1103-1116.
    13. Mahdi Ebrahimi Salari & Joseph Coleman & Daniel Toal, 2018. "Power Control of Direct Interconnection Technique for Airborne Wind Energy Systems," Energies, MDPI, vol. 11(11), pages 1-17, November.
    14. Johannes Alexander Müller & Mostafa Yasser Mostafa Khalil Elhashash & Volker Gollnick, 2022. "Electrical Launch Catapult and Landing Decelerator for Fixed-Wing Airborne Wind Energy Systems," Energies, MDPI, vol. 15(7), pages 1-19, March.
    15. Lunney, E. & Ban, M. & Duic, N. & Foley, A., 2017. "A state-of-the-art review and feasibility analysis of high altitude wind power in Northern Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 899-911.
    16. Jochem De Schutter & Rachel Leuthold & Thilo Bronnenmeyer & Elena Malz & Sebastien Gros & Moritz Diehl, 2023. "AWEbox : An Optimal Control Framework for Single- and Multi-Aircraft Airborne Wind Energy Systems," Energies, MDPI, vol. 16(4), pages 1-32, February.
    17. Silke van der Burg & Maarten F. M. Jurg & Flore M. Tadema & Linda M. Kamp & Geerten van de Kaa, 2022. "Dominant Designs for Wings of Airborne Wind Energy Systems," Energies, MDPI, vol. 15(19), pages 1-11, October.
    18. Malz, E.C. & Verendel, V. & Gros, S., 2020. "Computing the power profiles for an Airborne Wind Energy system based on large-scale wind data," Renewable Energy, Elsevier, vol. 162(C), pages 766-778.
    19. De Lellis, M. & Mendonça, A.K. & Saraiva, R. & Trofino, A. & Lezana, Á., 2016. "Electric power generation in wind farms with pumping kites: An economical analysis," Renewable Energy, Elsevier, vol. 86(C), pages 163-172.
    20. Rishikesh Joshi & Michiel Kruijff & Roland Schmehl, 2023. "Value-Driven System Design of Utility-Scale Airborne Wind Energy," Energies, MDPI, vol. 16(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:351-:d:1017993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.