IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p2084-d1637194.html
   My bibliography  Save this article

Modeling an All-Copper Redox Flow Battery for Microgrid Applications: Impact of Current and Flow Rate on Capacity Fading and Deposition

Author

Listed:
  • Mirko D’Adamo

    (NVISION, Sabino de Arana 14, 08028 Barcelona, Spain
    IREC, Jardins de les Dones de Negre 1, 2ª pl, Sant Adrià del Besòs, 08930 Barcelona, Spain
    Department of Automatic Control, Robotic and Vision, Universitat Politècnica de Catalunya, C. Jordi Girona, 08034 Barcelona, Spain)

  • Wouter Badenhorst

    (Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland)

  • Lasse Murtomäki

    (Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland)

  • Paula Cordoba

    (NVISION, Sabino de Arana 14, 08028 Barcelona, Spain)

  • Mohamed Derbeli

    (NVISION, Sabino de Arana 14, 08028 Barcelona, Spain)

  • Jose A. Saez-Zamora

    (NVISION, Sabino de Arana 14, 08028 Barcelona, Spain)

  • Lluís Trilla

    (IREC, Jardins de les Dones de Negre 1, 2ª pl, Sant Adrià del Besòs, 08930 Barcelona, Spain)

Abstract

The copper redox flow battery (CuRFB) stands out as a promising hybrid redox flow battery technology, offering significant advantages in electrolyte stability. Within the CuBER H-2020 project framework, this study addresses critical phenomena such as electrodeposition at the negative electrode during charging and copper crossover through the membrane, which influence capacity fading. A comprehensive two-dimensional physicochemical model of the CuRFB cell was developed using COMSOL Multiphysics, providing insights into the distribution of electroactive materials over time. The model was validated against experimental cycling data, demonstrating a Root Mean Square Error (RMSE) of 0.0212 in voltage estimation. Least-squares parameter estimation, utilizing Bound Optimization by Quadratic Approximation, was conducted to determine active material diffusivities and electron transfer coefficients. The results indicate that higher current densities and lower flow rates lead to increased copper deposition near the inlet, significantly impacting the battery’s State of Health (SoH). These findings highlight the importance of considering fluid dynamics and ion concentration distribution to improve battery performance and longevity. The study’s insights are crucial for optimizing and scaling up CuRFB operations, guiding potential cell-scale-up strategies into stack-level configurations.

Suggested Citation

  • Mirko D’Adamo & Wouter Badenhorst & Lasse Murtomäki & Paula Cordoba & Mohamed Derbeli & Jose A. Saez-Zamora & Lluís Trilla, 2025. "Modeling an All-Copper Redox Flow Battery for Microgrid Applications: Impact of Current and Flow Rate on Capacity Fading and Deposition," Energies, MDPI, vol. 18(8), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2084-:d:1637194
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/2084/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/2084/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William A. Braff & Joshua M. Mueller & Jessika E. Trancik, 2016. "Value of storage technologies for wind and solar energy," Nature Climate Change, Nature, vol. 6(10), pages 964-969, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    3. Qin, Chao (Chris) & Loth, Eric, 2021. "Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines," Applied Energy, Elsevier, vol. 292(C).
    4. Javed, Muhammad Shahzad & Jurasz, Jakub & McPherson, Madeleine & Dai, Yanjun & Ma, Tao, 2022. "Quantitative evaluation of renewable-energy-based remote microgrids: curtailment, load shifting, and reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    5. Zou, Wen-Jiang & Kim, Young-Bae & Jung, Seunghun, 2024. "Capacity fade prediction for vanadium redox flow batteries during long-term operations," Applied Energy, Elsevier, vol. 356(C).
    6. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Jafari, Mehdi & Korpås, Magnus & Botterud, Audun, 2020. "Power system decarbonization: Impacts of energy storage duration and interannual renewables variability," Renewable Energy, Elsevier, vol. 156(C), pages 1171-1185.
    8. Glenk, Gunther & Reichelstein, Stefan, 2021. "Intermittent versus dispatchable power sources: An integrated competitive assessment," ZEW Discussion Papers 21-065, ZEW - Leibniz Centre for European Economic Research.
    9. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Ma, Junpeng & Luo, Guangzhao & Teodorescu, Remus, 2020. "An optimized ensemble learning framework for lithium-ion Battery State of Health estimation in energy storage system," Energy, Elsevier, vol. 206(C).
    10. Liebensteiner, Mario & Haxhimusa, Adhurim & Naumann, Fabian, 2023. "Subsidized renewables’ adverse effect on energy storage and carbon pricing as a potential remedy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    11. Xu, Jiuping & Liu, Tingting, 2020. "Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development," Energy Policy, Elsevier, vol. 142(C).
    12. Kim, James Hyungkwan & Millstein, Dev & Wiser, Ryan & Mulvaney-Kemp, Julie, 2024. "Renewable-battery hybrid power plants in congested electricity markets: Implications for plant configuration," Renewable Energy, Elsevier, vol. 232(C).
    13. Miriam Benedetti & Daniele Dadi & Lorena Giordano & Vito Introna & Pasquale Eduardo Lapenna & Annalisa Santolamazza, 2021. "Design of a Database of Case Studies and Technologies to Increase the Diffusion of Low-Temperature Waste Heat Recovery in the Industrial Sector," Sustainability, MDPI, vol. 13(9), pages 1-19, May.
    14. Jianhe Wang & Mengxing Cui & Lei Chang, 2023. "Evaluating economic recovery by measuring the COVID-19 spillover impact on business practices: evidence from Asian markets intermediaries," Economic Change and Restructuring, Springer, vol. 56(3), pages 1629-1650, June.
    15. Iazzolino, Gianpaolo & Sorrentino, Nicola & Menniti, Daniele & Pinnarelli, Anna & De Carolis, Monica & Mendicino, Luca, 2022. "Energy communities and key features emerged from business models review," Energy Policy, Elsevier, vol. 165(C).
    16. Laha, Priyanka & Chakraborty, Basab, 2021. "Cost optimal combinations of storage technologies for maximizing renewable integration in Indian power system by 2040: Multi-region approach," Renewable Energy, Elsevier, vol. 179(C), pages 233-247.
    17. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).
    18. Parra, David & Mauger, Romain, 2022. "A new dawn for energy storage: An interdisciplinary legal and techno-economic analysis of the new EU legal framework," Energy Policy, Elsevier, vol. 171(C).
    19. Gao, Yang & Ma, Shaoxiu & Wang, Tao & Miao, Changhong & Yang, Fan, 2022. "Distributed onshore wind farm siting using intelligent optimization algorithm based on spatial and temporal variability of wind energy," Energy, Elsevier, vol. 258(C).
    20. Müller, Simon C. & Welpe, Isabell M., 2018. "Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers," Energy Policy, Elsevier, vol. 118(C), pages 492-503.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2084-:d:1637194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.