IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p2075-d1636832.html
   My bibliography  Save this article

Research on the Characteristics of a Range-Extended Hydraulic–Electric Hybrid Drive System for Tractor Traveling Systems

Author

Listed:
  • Hanwen Wu

    (College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Long Quan

    (College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Yunxiao Hao

    (College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Zhijie Pan

    (College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Songtao Xie

    (College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

Pure electric tractors face challenges in complex operating conditions, including the excessive peak motor torque caused by frequent start–stop cycles and insufficient energy utilization. To address these issues, this study proposes a hydraulic–electric hybrid drive system for tractor traveling systems which is based on a range-extended hybrid architecture. By combining the high-torque characteristics of hydraulic drive systems with the high control precision of electric motors, a hydraulic–electric dual-power coupling model was constructed. A logic-threshold-based operating mode division strategy and a hierarchical braking energy recovery mechanism were developed. The start–stop control dynamics and energy recovery efficiency of the system during plowing and transport operations were thoroughly analyzed. The simulation results demonstrate that while maintaining its acceleration and braking performance, the proposed system achieves 18.8% and 35.7% reductions in its peak motor torque during plowing and transport operations, respectively. Its braking energy recovery efficiency improved to 48.3% and 66.4% in the two scenarios; 18.5% and 25.7% reductions in overall energy consumption were seen.

Suggested Citation

  • Hanwen Wu & Long Quan & Yunxiao Hao & Zhijie Pan & Songtao Xie, 2025. "Research on the Characteristics of a Range-Extended Hydraulic–Electric Hybrid Drive System for Tractor Traveling Systems," Energies, MDPI, vol. 18(8), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2075-:d:1636832
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/2075/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/2075/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhen Zhu & Lingxin Zeng & Long Chen & Rong Zou & Yingfeng Cai, 2022. "Fuzzy Adaptive Energy Management Strategy for a Hybrid Agricultural Tractor Equipped with HMCVT," Agriculture, MDPI, vol. 12(12), pages 1-21, November.
    2. Shenghui Lei & Yanying Li & Mengnan Liu & Wenshuo Li & Tenglong Zhao & Shuailong Hou & Liyou Xu, 2025. "Hierarchical Energy Management and Energy Saving Potential Analysis for Fuel Cell Hybrid Electric Tractors," Energies, MDPI, vol. 18(2), pages 1-27, January.
    3. Li, Lin & Zhang, Tiezhu & Lu, Liqun & Zhang, Hongxin & Yang, Jian & Zhang, Zhen, 2023. "An energy active regulation management strategy based on driving mode recognition for electro-hydraulic hybrid vehicles," Energy, Elsevier, vol. 285(C).
    4. Yifan Zhao & Liyou Xu & Chenhui Zhao & Haigang Xu & Xianghai Yan, 2024. "Research on Energy Management Strategy for Hybrid Tractors Based on DP-MPC," Energies, MDPI, vol. 17(16), pages 1-22, August.
    5. Ali, Dilawer & de Castro, Ricardo & Ehsani, Reza & Vougioukas, Stavros & Wei, Peng, 2025. "Unlocking the potential of electric and hybrid tractors via sensitivity and techno-economic analysis," Applied Energy, Elsevier, vol. 377(PC).
    6. Mu, Hongyun & Cheng, Min & Tang, Xiongfeng & Ding, Ruqi & Ma, Wensheng, 2025. "A hybrid distributed-centralized load sensing system for efficiency improvement of electrified construction machinery," Energy, Elsevier, vol. 314(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zifeng Pei & Li Zhang & Haijun Fu & Yucheng Wang, 2025. "New Fault-Tolerant Sensorless Control of FPFTPM Motor Based on Hybrid Adaptive Robust Observation for Electric Agricultural Equipment Applications," Energies, MDPI, vol. 18(8), pages 1-22, April.
    2. Rundong Zhou & Lin Wang & Xiaoting Deng & Chao Su & Song Fang & Zhixiong Lu, 2024. "Research on Energy Distribution Strategy of Tandem Hybrid Tractor Based on the Pontryagin Minimum Principle," Agriculture, MDPI, vol. 14(3), pages 1-17, March.
    3. Wang, Zhiguo & Wei, Hongqian & Xi, Yecheng & Xiao, Gongwei, 2024. "Data-driven energy utilization for plug-in hybrid electric bus with driving patten application and battery health considerations," Energy, Elsevier, vol. 310(C).
    4. Ganghui Feng & Junjiang Zhang & Xianghai Yan & Chunhong Dong & Mengnan Liu & Liyou Xu, 2024. "Research on energy-saving control of agricultural hybrid tractors integrating working condition prediction," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-26, March.
    5. Francesco Mocera & Aurelio Somà & Salvatore Martelli & Valerio Martini, 2023. "Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications," Energies, MDPI, vol. 16(18), pages 1-36, September.
    6. Xiaohui Liu & Yiwei Wu & Jingyun Zhang & Yifan Zhao & Yangming Hu & Xianghai Yan, 2025. "Research on energy optimization control strategy for parallel hybrid tractor based on AIPSO," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-28, February.
    7. Shenghui Lei & Yanying Li & Mengnan Liu & Wenshuo Li & Tenglong Zhao & Shuailong Hou & Liyou Xu, 2025. "Hierarchical Energy Management and Energy Saving Potential Analysis for Fuel Cell Hybrid Electric Tractors," Energies, MDPI, vol. 18(2), pages 1-27, January.
    8. Haobin Jiang & Yang Zhao & Shidian Ma, 2025. "Dual-Layer Energy Management Strategy for a Hybrid Energy Storage System to Enhance PHEV Performance," Energies, MDPI, vol. 18(7), pages 1-20, March.
    9. Zhou, Jie & Zhang, Tiezhu & Zhang, Hongxin & Zhang, Zhen & Hong, Jichao & Yang, Jian, 2024. "Energy management strategy for electro-hydraulic hybrid electric vehicles considering optimal mode switching: A soft actor-critic approach trained on a multi-modal driving cycle," Energy, Elsevier, vol. 305(C).
    10. Qian Zhang & Caiqi Hu & Rui Li, 2024. "Research on Distributed Dual-Wheel Electric-Drive Fuzzy PI Control for Agricultural Tractors," Agriculture, MDPI, vol. 14(9), pages 1-19, August.
    11. Junjiang Zhang & Mingyue Shi & Mengnan Liu & Hanxiao Li & Bin Zhao & Xianghai Yan, 2024. "Dual-Source Cooperative Optimized Energy Management Strategy for Fuel Cell Tractor Considering Drive Efficiency and Power Allocation," Agriculture, MDPI, vol. 14(9), pages 1-26, August.
    12. Piras, M. & De Bellis, V. & Malfi, E. & Novella, R. & Lopez-Juarez, M., 2024. "Hydrogen consumption and durability assessment of fuel cell vehicles in realistic driving," Applied Energy, Elsevier, vol. 358(C).
    13. Lei Pei & Yuhong Wu & Xiaoling Shen & Cheng Yu & Zhuoran Wen & Tiansi Wang, 2025. "Energy State Estimation for Series-Connected Battery Packs Based on Online Curve Construction of Pack Comprehensive OCV," Energies, MDPI, vol. 18(7), pages 1-20, April.
    14. Liming Sun & Mengnan Liu & Zhipeng Wang & Chuqiao Wang & Fuqiang Luo, 2023. "Research on Load Spectrum Reconstruction Method of Exhaust System Mounting Bracket of a Hybrid Tractor Based on MOPSO-Wavelet Decomposition Technique," Agriculture, MDPI, vol. 13(10), pages 1-18, September.
    15. Zhiqiang Xi & Ziying Luo & Fuyi Cao & Lianbo Niu & Liyou Xu, 2024. "Output speed control for hydro-mechanical continuously variable transmission of tractor," PLOS ONE, Public Library of Science, vol. 19(9), pages 1-24, September.
    16. Ugnė Koletė Medževeprytė & Rolandas Makaras & Vaidas Lukoševičius & Sigitas Kilikevičius, 2023. "Application and Efficiency of a Series-Hybrid Drive for Agricultural Use Based on a Modified Version of the World Harmonized Transient Cycle," Energies, MDPI, vol. 16(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2075-:d:1636832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.