IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3842-d1705215.html
   My bibliography  Save this article

A Novel Back Propagation Neural Network Based on the Harris Hawks Optimization Algorithm for the Remaining Useful Life Prediction of Lithium-Ion Batteries

Author

Listed:
  • Yuyang Zhou

    (School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Zijian Shao

    (School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Huanhuan Li

    (Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China)

  • Jing Chen

    (Intelligent Manufacturing Institute, Taizhou Polytechnic College, 8 Tianxing Road, Gaoxin District, Taizhou 225300, China)

  • Haohan Sun

    (Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China)

  • Yaping Wang

    (School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China)

  • Nan Wang

    (Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China)

  • Lei Pei

    (Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China)

  • Zhen Wang

    (Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China)

  • Houzhong Zhang

    (Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China)

  • Chaochun Yuan

    (Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China)

Abstract

Remaining useful life (RUL) serves as a pivotal metric for quantifying lithium-ion batteries’ state of health (SOH) in electric vehicles and plays a crucial role in ensuring their safety and reliability. In order to achieve accurate and reliable RUL prediction, a novel RUL prediction method which employs a back propagation (BP) neural network based on the Harris Hawks optimization (HHO) algorithm is proposed. This method optimizes the BP parameters using the improved HHO algorithm. At first, the circle chaotic mapping method is utilized to solve the problem of the initial value. Considering the problem of local convergence, Gaussian mutation is introduced to improve the search ability of the algorithm. Subsequently, two key health factors are selected as input features for the model, including the constant-current charging isovoltage rise time and constant-current discharging isovoltage drop time. The model is validated using aging data from commercial lithium iron phosphate (LiFePO 4 ) batteries. Finally, the model is thoroughly verified under an aging test. Experimental validation using training sets comprising 50%, 60%, and 70% of the cycle data demonstrates superior predictive performance, with mean absolute error (MAE) values below 0.012, root mean square error (RMSE) values below 0.017 and mean absolute percentage error (MAPE) within 0.95%. The results indicate that the model significantly improves prediction accuracy, robustness and searchability.

Suggested Citation

  • Yuyang Zhou & Zijian Shao & Huanhuan Li & Jing Chen & Haohan Sun & Yaping Wang & Nan Wang & Lei Pei & Zhen Wang & Houzhong Zhang & Chaochun Yuan, 2025. "A Novel Back Propagation Neural Network Based on the Harris Hawks Optimization Algorithm for the Remaining Useful Life Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 18(14), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3842-:d:1705215
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3842/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3842/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhen Zhu & Lingxin Zeng & Long Chen & Rong Zou & Yingfeng Cai, 2022. "Fuzzy Adaptive Energy Management Strategy for a Hybrid Agricultural Tractor Equipped with HMCVT," Agriculture, MDPI, vol. 12(12), pages 1-21, November.
    2. Wen, Jianping & Chen, Xing & Li, Xianghe & Li, Yikun, 2022. "SOH prediction of lithium battery based on IC curve feature and BP neural network," Energy, Elsevier, vol. 261(PA).
    3. Zuo, Hongyan & Liang, Jingwei & Zhang, Bin & Wei, Kexiang & Zhu, Hong & Tan, Jiqiu, 2023. "Intelligent estimation on state of health of lithium-ion power batteries based on failure feature extraction," Energy, Elsevier, vol. 282(C).
    4. Patil, Meru A. & Tagade, Piyush & Hariharan, Krishnan S. & Kolake, Subramanya M. & Song, Taewon & Yeo, Taejung & Doo, Seokgwang, 2015. "A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation," Applied Energy, Elsevier, vol. 159(C), pages 285-297.
    5. Xue, Qiao & Li, Junqiu & Xu, Peipei, 2022. "Machine learning based swift online capacity prediction of lithium-ion battery through whole cycle life," Energy, Elsevier, vol. 261(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Kui & Luo, Yang & Long, Zhou & Li, Yang & Nie, Guangbo & Liu, Kai & Xin, Dongli & Gao, Guoqiang & Wu, Guangning, 2025. "Big data-driven prognostics and health management of lithium-ion batteries:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    2. Li, Qingbo & Lu, Taolin & Lai, Chunyan & Li, Jiwei & Pan, Long & Ma, Changjun & Zhu, Yunpeng & Xie, Jingying, 2024. "Lithium-ion battery capacity estimation based on fragment charging data using deep residual shrinkage networks and uncertainty evaluation," Energy, Elsevier, vol. 290(C).
    3. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    4. Yixin Liu & Ao Lei & Chunyang Yu & Tengfei Huang & Yuanbin Yu, 2024. "An Improved Collaborative Estimation Method for Determining The SOC and SOH of Lithium-Ion Power Batteries for Electric Vehicles," Energies, MDPI, vol. 17(13), pages 1-22, July.
    5. Ma, Jun & Cheng, Jack C.P., 2016. "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," Applied Energy, Elsevier, vol. 183(C), pages 193-201.
    6. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    7. Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Yuqing Zhang & Weijian Zhang & Chengxuan Wu & Fengwu Zhu & Zhida Li, 2023. "Prediction Model of Pigsty Temperature Based on ISSA-LSSVM," Agriculture, MDPI, vol. 13(9), pages 1-16, August.
    9. Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
    10. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    11. Jun Peng & Zhiyong Zheng & Xiaoyong Zhang & Kunyuan Deng & Kai Gao & Heng Li & Bin Chen & Yingze Yang & Zhiwu Huang, 2020. "A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction," Energies, MDPI, vol. 13(3), pages 1-20, February.
    12. Wang, Yixiu & Zhu, Jiangong & Cao, Liang & Gopaluni, Bhushan & Cao, Yankai, 2023. "Long Short-Term Memory Network with Transfer Learning for Lithium-ion Battery Capacity Fade and Cycle Life Prediction," Applied Energy, Elsevier, vol. 350(C).
    13. Dai, Houde & Wang, Jiaxin & Huang, Yiyang & Lai, Yuan & Zhu, Liqi, 2024. "Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization," Renewable Energy, Elsevier, vol. 222(C).
    14. Shu, Xing & Li, Guang & Shen, Jiangwei & Lei, Zhenzhen & Chen, Zheng & Liu, Yonggang, 2020. "A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization," Energy, Elsevier, vol. 204(C).
    15. Ma, Ying & Wei, Rongrong & Zuo, Hongyan & Zuo, Qingsong & Luo, Xiaoyu & Chen, Ying & Wu, Shuying & Chen, Wei, 2024. "N-doped EG@MOFs derived porous carbon composite phase change materials for thermal optimization of Li-ion batteries at low temperature," Energy, Elsevier, vol. 286(C).
    16. Ouyang, Tiancheng & Gong, Yubin & Ye, Jinlu & Deng, Qiaoyang & Su, Yingying, 2025. "State co-estimation for lithium-ion batteries based on multi-innovations online identification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    17. Zifeng Pei & Li Zhang & Haijun Fu & Yucheng Wang, 2025. "New Fault-Tolerant Sensorless Control of FPFTPM Motor Based on Hybrid Adaptive Robust Observation for Electric Agricultural Equipment Applications," Energies, MDPI, vol. 18(8), pages 1-22, April.
    18. Rundong Zhou & Lin Wang & Xiaoting Deng & Chao Su & Song Fang & Zhixiong Lu, 2024. "Research on Energy Distribution Strategy of Tandem Hybrid Tractor Based on the Pontryagin Minimum Principle," Agriculture, MDPI, vol. 14(3), pages 1-17, March.
    19. Liu, Xinghua & Li, Siqi & Tian, Jiaqiang & Wei, Zhongbao & Wang, Peng, 2023. "Health estimation of lithium-ion batteries with voltage reconstruction and fusion model," Energy, Elsevier, vol. 282(C).
    20. Chang, Chun & Pan, Yaliang & Wang, Shaojin & Jiang, Jiuchun & Tian, Aina & Gao, Yang & Jiang, Yan & Wu, Tiezhou, 2024. "Fast EIS acquisition method based on SSA-DNN prediction model," Energy, Elsevier, vol. 288(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3842-:d:1705215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.