IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p2028-d1635317.html
   My bibliography  Save this article

Low-Temperature Performance and Durability of Electric Vehicle Battery Cells Under Isothermal Conditions

Author

Listed:
  • Steven Recoskie

    (Energy, Mining and Environment Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada)

  • Dean D. MacNeil

    (Energy, Mining and Environment Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada)

  • Ken Darcovich

    (Energy, Mining and Environment Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada)

  • Joel Perron

    (Energy, Mining and Environment Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada)

  • Samuel Pedroso

    (Innovation Centre, Transport Canada, Ottawa, ON K1A 0N5, Canada)

Abstract

Electric vehicle (xEV) battery durability significantly impacts the long-term operation, consumer satisfaction, and market adoption of xEVs. As driving range diminishes over time, it affects vehicle service life and lifecycle GHG emissions. Measuring the full service life of xEV batteries in laboratory tests presents technical and logistical challenges, necessitating representative measurements for parameterizing numerical models. These models are crucial for predicting long-term performance and rely on high-quality experimental data. While performance and aging trends under extreme temperatures are documented, cell thermal contact conditions suitable for direct model input are not well characterized. This study investigates lithium-ion cells from three xEV types, cycled at constant currents from C/40 to 1C, at temperatures between −15 °C and +45 °C, over 1000 cycles in a multi-year campaign. Stable isothermal cell temperatures were achieved using custom-built liquid immersion baths with forced convection, highlighting fundamental electrochemical behaviors by decoupling complex self-heating not typically monitored in air environments. The data inform and validate physics-based models on temperature-dependent performance and durability, providing operational limits to enhance cell and battery thermal management design and educate xEV consumers about conditions affecting performance, range, and durability.

Suggested Citation

  • Steven Recoskie & Dean D. MacNeil & Ken Darcovich & Joel Perron & Samuel Pedroso, 2025. "Low-Temperature Performance and Durability of Electric Vehicle Battery Cells Under Isothermal Conditions," Energies, MDPI, vol. 18(8), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2028-:d:1635317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/2028/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/2028/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Landini, S. & O’Donovan, T.S., 2021. "Novel experimental approach for the characterisation of Lithium-Ion cells performance in isothermal conditions," Energy, Elsevier, vol. 214(C).
    2. Jiang, Jiuchun & Ruan, Haijun & Sun, Bingxiang & Zhang, Weige & Gao, Wenzhong & Wang, Le Yi & Zhang, Linjing, 2016. "A reduced low-temperature electro-thermal coupled model for lithium-ion batteries," Applied Energy, Elsevier, vol. 177(C), pages 804-816.
    3. Ecker, Madeleine & Shafiei Sabet, Pouyan & Sauer, Dirk Uwe, 2017. "Influence of operational condition on lithium plating for commercial lithium-ion batteries – Electrochemical experiments and post-mortem-analysis," Applied Energy, Elsevier, vol. 206(C), pages 934-946.
    4. Wang, Qian & Jiang, Bin & Li, Bo & Yan, Yuying, 2016. "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 106-128.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. He, Xitian & Sun, Bingxiang & Zhang, Weige & Su, Xiaojia & Ma, Shichang & Li, Hao & Ruan, Haijun, 2023. "Inconsistency modeling of lithium-ion battery pack based on variational auto-encoder considering multi-parameter correlation," Energy, Elsevier, vol. 277(C).
    4. Lei, Deyong & Wang, Yun & Fu, Jingfei & Zhu, Xiaobao & Shi, Jing & Wang, Yachao, 2024. "Electrochemical-thermal analysis of large-sized lithium-ion batteries: Influence of cell thickness and cooling strategy in charging," Energy, Elsevier, vol. 307(C).
    5. Huang, Deyang & Chen, Ziqiang & Zhou, Shiyao, 2021. "Model prediction-based battery-powered heating method for series-connected lithium-ion battery pack working at extremely cold temperatures," Energy, Elsevier, vol. 216(C).
    6. Chen, Zeyu & Zhang, Bo & Xiong, Rui & Shen, Weixiang & Yu, Quanqing, 2021. "Electro-thermal coupling model of lithium-ion batteries under external short circuit," Applied Energy, Elsevier, vol. 293(C).
    7. Chen, Liping & Xie, Siqiang & Lopes, António M. & Li, Huafeng & Bao, Xinyuan & Zhang, Chaolong & Li, Penghua, 2024. "A new SOH estimation method for Lithium-ion batteries based on model-data-fusion," Energy, Elsevier, vol. 286(C).
    8. Saeed, Ali & Karimi, Nader & Paul, Manosh C., 2021. "Analysis of the unsteady thermal response of a Li-ion battery pack to dynamic loads," Energy, Elsevier, vol. 231(C).
    9. Kriegler, Johannes & Hille, Lucas & Stock, Sandro & Kraft, Ludwig & Hagemeister, Jan & Habedank, Jan Bernd & Jossen, Andreas & Zaeh, Michael F., 2021. "Enhanced performance and lifetime of lithium-ion batteries by laser structuring of graphite anodes," Applied Energy, Elsevier, vol. 303(C).
    10. Chengning Zhang & Xin Jin & Junqiu Li, 2017. "PTC Self-Heating Experiments and Thermal Modeling of Lithium-Ion Battery Pack in Electric Vehicles," Energies, MDPI, vol. 10(4), pages 1-21, April.
    11. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    13. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    14. Anandh Ramesh Babu & Jelena Andric & Blago Minovski & Simone Sebben, 2021. "System-Level Modeling and Thermal Simulations of Large Battery Packs for Electric Trucks," Energies, MDPI, vol. 14(16), pages 1-15, August.
    15. Wang, Anci & Yin, Xiang & Xin, Zhicheng & Cao, Feng & Wu, Zan & Sundén, Bengt & Xiao, Di, 2023. "Performance optimization of electric vehicle battery thermal management based on the transcritical CO2 system," Energy, Elsevier, vol. 266(C).
    16. Suresh, C. & Awasthi, Abhishek & Kumar, Binit & Im, Seong-kyun & Jeon, Yongseok, 2025. "Advances in battery thermal management for electric vehicles: A comprehensive review of hybrid PCM-metal foam and immersion cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    17. Jian, Jiting & Zhang, Zeping & Wang, Shixue & Gong, Jinke, 2023. "Analysis of control strategies in alternating current preheating of lithium-ion cell," Applied Energy, Elsevier, vol. 333(C).
    18. Vega-Garita, Victor & Ramirez-Elizondo, Laura & Bauer, Pavol, 2017. "Physical integration of a photovoltaic-battery system: A thermal analysis," Applied Energy, Elsevier, vol. 208(C), pages 446-455.
    19. Wang, Shuoqi & Lu, Languang & Han, Xuebing & Ouyang, Minggao & Feng, Xuning, 2020. "Virtual-battery based droop control and energy storage system size optimization of a DC microgrid for electric vehicle fast charging station," Applied Energy, Elsevier, vol. 259(C).
    20. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Zizhou Lao, 2017. "A Cubature Particle Filter Algorithm to Estimate the State of the Charge of Lithium-Ion Batteries Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(4), pages 1-15, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2028-:d:1635317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.