IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v230y2018icp257-266.html
   My bibliography  Save this article

A low-temperature internal heating strategy without lifetime reduction for large-size automotive lithium-ion battery pack

Author

Listed:
  • Jiang, Jiuchun
  • Ruan, Haijun
  • Sun, Bingxiang
  • Wang, Leyi
  • Gao, Wenzhong
  • Zhang, Weige

Abstract

To overcome the long-standing challenge of poor performance of large-size automotive lithium-ion battery pack at low temperature, an internal self-heating strategy without lifetime reduction is proposed. A new method superimposing the discharge current on alternating current for self-heating is developed to prevent lithium-ion deposition, which not only avoids the measurement difficulty of potential and impedance of anode electrode, but also circumvents inconsistency problem of battery pack. The permissible alternating current and direct current are determined to avoid lithium-ion deposition. An effective yet simple soft-switching circuit is designed for heating of large-size automotive lithium-ion battery pack. The battery pack is warmed up from −20.8 °C to 2.1 °C within 600 s, where the temperature difference among twelve batteries is below 1.6 °C, implying the essentially uniform temperature distribution. Based on the performance analysis for battery pack, no obvious loss of lithium inventory is found and no lifetime reduction is observed after 600 repeated heating tests due to the suitable over-potential of anode electrode and no substantial thermal-induced aging stress. The proposed self-heating strategy, validated for heating uniformly and effectively without lifetime reduction, is of high potential to deliver a practical solution to poor performance of large-size automotive lithium-ion battery pack in cold conditions.

Suggested Citation

  • Jiang, Jiuchun & Ruan, Haijun & Sun, Bingxiang & Wang, Leyi & Gao, Wenzhong & Zhang, Weige, 2018. "A low-temperature internal heating strategy without lifetime reduction for large-size automotive lithium-ion battery pack," Applied Energy, Elsevier, vol. 230(C), pages 257-266.
  • Handle: RePEc:eee:appene:v:230:y:2018:i:c:p:257-266
    DOI: 10.1016/j.apenergy.2018.08.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918312303
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.08.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Jiuchun & Ruan, Haijun & Sun, Bingxiang & Zhang, Weige & Gao, Wenzhong & Wang, Le Yi & Zhang, Linjing, 2016. "A reduced low-temperature electro-thermal coupled model for lithium-ion batteries," Applied Energy, Elsevier, vol. 177(C), pages 804-816.
    2. Guo, Shanshan & Xiong, Rui & Wang, Kan & Sun, Fengchun, 2018. "A novel echelon internal heating strategy of cold batteries for all-climate electric vehicles application," Applied Energy, Elsevier, vol. 219(C), pages 256-263.
    3. Ruan, Haijun & Jiang, Jiuchun & Sun, Bingxiang & Zhang, Weige & Gao, Wenzhong & Wang, Le Yi & Ma, Zeyu, 2016. "A rapid low-temperature internal heating strategy with optimal frequency based on constant polarization voltage for lithium-ion batteries," Applied Energy, Elsevier, vol. 177(C), pages 771-782.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiong, Rui & Li, Zhengyang & Yang, Ruixin & Shen, Weixiang & Ma, Suxiao & Sun, Fengchun, 2022. "Fast self-heating battery with anti-aging awareness for freezing climates application," Applied Energy, Elsevier, vol. 324(C).
    2. Chen, Dinghong & Zhang, Weige & Zhang, Caiping & Sun, Bingxiang & Cong, XinWei & Wei, Shaoyuan & Jiang, Jiuchun, 2022. "A novel deep learning-based life prediction method for lithium-ion batteries with strong generalization capability under multiple cycle profiles," Applied Energy, Elsevier, vol. 327(C).
    3. Ren, Ruyang & Zhao, Yaohua & Diao, Yanhua & Liang, Lin, 2022. "Experimental study on preheating thermal management system for lithium-ion battery based on U-shaped micro heat pipe array," Energy, Elsevier, vol. 253(C).
    4. Mingsai Zhang & Ping Fu & Junfei Wu & Hao Wang, 2022. "Lattice Spacing, Morphology, Properties, and Quasi—In Situ Impedance of Ternary Lithium-Ion Batteries at a Low Temperature," Energies, MDPI, vol. 15(4), pages 1-10, February.
    5. Huang, Deyang & Chen, Ziqiang & Zhou, Shiyao, 2022. "Self-powered heating strategy for lithium-ion battery pack applied in extremely cold climates," Energy, Elsevier, vol. 239(PB).
    6. Qin, Yudi & Xu, Zhoucheng & Xiao, Shengran & Gao, Ming & Bai, Jian & Liebig, Dorothea & Lu, Languang & Han, Xuebing & Li, Yalun & Du, Jiuyu & Ouyang, Minggao, 2023. "Temperature consistency–oriented rapid heating strategy combining pulsed operation and external thermal management for lithium-ion batteries," Applied Energy, Elsevier, vol. 335(C).
    7. Li, Hao & Zhang, Weige & Sun, Bingxiang & Cai, Xue & Fan, Xinyuan & Zhao, Bo & Zhang, Caiping, 2023. "The degradation characteristics and mechanism of Li[Ni0.5Co0.2Mn0.3]O2 batteries with high frequency current ripple excitation," Applied Energy, Elsevier, vol. 343(C).
    8. Ruan, Haijun & Jiang, Jiuchun & Sun, Bingxiang & Su, Xiaojia & He, Xitian & Zhao, Kejie, 2019. "An optimal internal-heating strategy for lithium-ion batteries at low temperature considering both heating time and lifetime reduction," Applied Energy, Elsevier, vol. 256(C).
    9. Jian, Jiting & Zhang, Zeping & Wang, Shixue & Gong, Jinke, 2023. "Analysis of control strategies in alternating current preheating of lithium-ion cell," Applied Energy, Elsevier, vol. 333(C).
    10. Zhang, Xinghui & Li, Zhao & Luo, Lingai & Fan, Yilin & Du, Zhengyu, 2022. "A review on thermal management of lithium-ion batteries for electric vehicles," Energy, Elsevier, vol. 238(PA).
    11. Ghassemi, Alireza & Hollenkamp, Anthony F. & Chakraborty Banerjee, Parama & Bahrani, Behrooz, 2022. "Impact of high-amplitude alternating current on LiFePO4 battery life performance: Investigation of AC-preheating and microcycling effects," Applied Energy, Elsevier, vol. 314(C).
    12. Bingxiang Sun & Xianjie Qi & Donglin Song & Haijun Ruan, 2023. "Review of Low-Temperature Performance, Modeling and Heating for Lithium-Ion Batteries," Energies, MDPI, vol. 16(20), pages 1-37, October.
    13. Cheng, Gong & Wang, Zhangzhou & Wang, Xinzhi & He, Yurong, 2022. "All-climate thermal management structure for batteries based on expanded graphite/polymer composite phase change material with a high thermal and electrical conductivity," Applied Energy, Elsevier, vol. 322(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borui Wang & Mingyin Yan, 2023. "Research on the Improvement of Lithium-Ion Battery Performance at Low Temperatures Based on Electromagnetic Induction Heating Technology," Energies, MDPI, vol. 16(23), pages 1-24, November.
    2. Bingxiang Sun & Xianjie Qi & Donglin Song & Haijun Ruan, 2023. "Review of Low-Temperature Performance, Modeling and Heating for Lithium-Ion Batteries," Energies, MDPI, vol. 16(20), pages 1-37, October.
    3. Qin, Yudi & Xu, Zhoucheng & Xiao, Shengran & Gao, Ming & Bai, Jian & Liebig, Dorothea & Lu, Languang & Han, Xuebing & Li, Yalun & Du, Jiuyu & Ouyang, Minggao, 2023. "Temperature consistency–oriented rapid heating strategy combining pulsed operation and external thermal management for lithium-ion batteries," Applied Energy, Elsevier, vol. 335(C).
    4. Jiang, Li & Li, Yong & Huang, Yuduo & Yu, Jiaqi & Qiao, Xuebo & Wang, Yixiao & Huang, Chun & Cao, Yijia, 2020. "Optimization of multi-stage constant current charging pattern based on Taguchi method for Li-Ion battery," Applied Energy, Elsevier, vol. 259(C).
    5. Ruan, Haijun & Jiang, Jiuchun & Sun, Bingxiang & Su, Xiaojia & He, Xitian & Zhao, Kejie, 2019. "An optimal internal-heating strategy for lithium-ion batteries at low temperature considering both heating time and lifetime reduction," Applied Energy, Elsevier, vol. 256(C).
    6. Guo, Shanshan & Xiong, Rui & Wang, Kan & Sun, Fengchun, 2018. "A novel echelon internal heating strategy of cold batteries for all-climate electric vehicles application," Applied Energy, Elsevier, vol. 219(C), pages 256-263.
    7. Ghassemi, Alireza & Hollenkamp, Anthony F. & Chakraborty Banerjee, Parama & Bahrani, Behrooz, 2022. "Impact of high-amplitude alternating current on LiFePO4 battery life performance: Investigation of AC-preheating and microcycling effects," Applied Energy, Elsevier, vol. 314(C).
    8. Wang, Yujie & Zhang, Xingchen & Chen, Zonghai, 2022. "Low temperature preheating techniques for Lithium-ion batteries: Recent advances and future challenges," Applied Energy, Elsevier, vol. 313(C).
    9. Qin, Yudi & Du, Jiuyu & Lu, Languang & Gao, Ming & Haase, Frank & Li, Jianqiu & Ouyang, Minggao, 2020. "A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life," Applied Energy, Elsevier, vol. 280(C).
    10. He, Xitian & Sun, Bingxiang & Zhang, Weige & Su, Xiaojia & Ma, Shichang & Li, Hao & Ruan, Haijun, 2023. "Inconsistency modeling of lithium-ion battery pack based on variational auto-encoder considering multi-parameter correlation," Energy, Elsevier, vol. 277(C).
    11. Huang, Deyang & Chen, Ziqiang & Zhou, Shiyao, 2021. "Model prediction-based battery-powered heating method for series-connected lithium-ion battery pack working at extremely cold temperatures," Energy, Elsevier, vol. 216(C).
    12. Chen, Zeyu & Zhang, Bo & Xiong, Rui & Shen, Weixiang & Yu, Quanqing, 2021. "Electro-thermal coupling model of lithium-ion batteries under external short circuit," Applied Energy, Elsevier, vol. 293(C).
    13. Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
    14. Chengning Zhang & Xin Jin & Junqiu Li, 2017. "PTC Self-Heating Experiments and Thermal Modeling of Lithium-Ion Battery Pack in Electric Vehicles," Energies, MDPI, vol. 10(4), pages 1-21, April.
    15. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    16. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Zizhou Lao, 2017. "A Cubature Particle Filter Algorithm to Estimate the State of the Charge of Lithium-Ion Batteries Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(4), pages 1-15, April.
    17. Kittinan Boonma & Napol Patimaporntap & Hussein Mbulu & Piyatida Trinuruk & Kitchanon Ruangjirakit & Yossapong Laoonual & Somchai Wongwises, 2022. "A Review of the Parameters Affecting a Heat Pipe Thermal Management System for Lithium-Ion Batteries," Energies, MDPI, vol. 15(22), pages 1-16, November.
    18. Zichen, Wang & Changqing, Du, 2021. "A comprehensive review on thermal management systems for power lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    19. Ling, Ziye & Wen, Xiaoyan & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures," Energy, Elsevier, vol. 144(C), pages 977-983.
    20. Li, Shuangqi & He, Hongwen & Su, Chang & Zhao, Pengfei, 2020. "Data driven battery modeling and management method with aging phenomenon considered," Applied Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:230:y:2018:i:c:p:257-266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.