IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1839-d1628550.html
   My bibliography  Save this article

Integrated Atmospheric Water Generators for Building Sustainability: A Simulation-Based Approach

Author

Listed:
  • Lucia Cattani

    (SEAS SA, Société de l’Eau Aérienne Suisse, Technical Office, via dell’Industria 13/A, 6826 Riva San Vitale, Switzerland)

  • Roberto Figoni

    (Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy)

  • Paolo Cattani

    (Independent Researcher, Via Piermarini 4/L, 26900 Lodi, Italy)

  • Anna Magrini

    (Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy)

Abstract

This paper presents the first results of a broader study aimed at considering atmospheric water generation as a viable option within sustainable building design strategies. In particular, the focus is on integrated systems in which atmospheric water generator (AWG) machines, in addition to producing water, support HVAC systems. The research focuses on the combined use of two different simulation tools: a commercial tool designed to study the energy balance of buildings and a custom-developed software for AWG modelling. This is the first step of a more complex procedure of software integration that is aimed to provide designers with a method to implement AWGs in the design process of buildings, both residential or industrial. This preliminary procedure is applied to a case study concerning the link between an advanced integrated AWG and a building housing inverters and transformers that belong to a photovoltaic field. The scope of the integration consists in enhancing the energy sustainability of atmospheric water intended for hydrogen production and panel washing by means of the dry and cold air flux that comes from the cycle of vapour condensation. The results highlight the potentialities of the integrated design, which includes AWGs, to enhance the final efficiency of sustainable housing. In particular, the joint action of the simulation tools used in this study provides insights about the possibility to reduce the size of traditional chiller that serve the building by an order of magnitude, and to achieve an energy saving of 29.8 MWh a year.

Suggested Citation

  • Lucia Cattani & Roberto Figoni & Paolo Cattani & Anna Magrini, 2025. "Integrated Atmospheric Water Generators for Building Sustainability: A Simulation-Based Approach," Energies, MDPI, vol. 18(7), pages 1-27, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1839-:d:1628550
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tu, Rang & Hwang, Yunho, 2020. "Reviews of atmospheric water harvesting technologies," Energy, Elsevier, vol. 201(C).
    2. Pooja Preetha & Jejal Reddy Bathi & Manoj Kumar & Venkateswara Rao Kode, 2025. "Predictive Tools and Advances in Sustainable Water Resources Through Atmospheric Water Generation Under Changing Climate: A Review," Sustainability, MDPI, vol. 17(4), pages 1-20, February.
    3. Tashtoush, Bourhan & Alshoubaki, Anas, 2023. "Atmospheric water harvesting: A review of techniques, performance, renewable energy solutions, and feasibility," Energy, Elsevier, vol. 280(C).
    4. Mengbo Zhang & Ranbin Liu & Yaxuan Li, 2022. "Diversifying Water Sources with Atmospheric Water Harvesting to Enhance Water Supply Resilience," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    5. Salehi, Ali Akbar & Ghannadi-Maragheh, Mohammad & Torab-Mostaedi, Meisam & Torkaman, Rezvan & Asadollahzadeh, Mehdi, 2020. "A review on the water-energy nexus for drinking water production from humid air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    6. Lucia Cattani & Paolo Cattani & Anna Magrini & Roberto Figoni & Daniele Dondi & Dhanalakshmi Vadivel, 2023. "Suitability and Energy Sustainability of Atmospheric Water Generation Technology for Green Hydrogen Production," Energies, MDPI, vol. 16(18), pages 1-20, September.
    7. Lucia Cattani & Paolo Cattani & Anna Magrini, 2021. "Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment," Energies, MDPI, vol. 14(14), pages 1-17, July.
    8. Schill, Wolf-Peter, 2020. "Electricity Storage and the Renewable Energy Transition," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 4(10), pages 2059-2064.
    9. Lucia Cattani & Anna Magrini & Valentina Leoni, 2022. "Energy Performance of Water Generators from Gaseous Mixtures by Condensation: Climatic Datasets Choice," Energies, MDPI, vol. 15(20), pages 1-24, October.
    10. Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2018. "Measurement uncertainty in energy monitoring: Present state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2791-2805.
    11. Lucia Cattani & Paolo Cattani & Anna Magrini, 2021. "Air to Water Generator Integrated Systems: The Proposal of a Global Evaluation Index—GEI Formulation and Application Examples," Energies, MDPI, vol. 14(24), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucia Cattani & Paolo Cattani & Anna Magrini & Roberto Figoni & Daniele Dondi & Dhanalakshmi Vadivel, 2023. "Suitability and Energy Sustainability of Atmospheric Water Generation Technology for Green Hydrogen Production," Energies, MDPI, vol. 16(18), pages 1-20, September.
    2. Lucia Cattani & Anna Magrini & Valentina Leoni, 2022. "Energy Performance of Water Generators from Gaseous Mixtures by Condensation: Climatic Datasets Choice," Energies, MDPI, vol. 15(20), pages 1-24, October.
    3. Shafeian, Nafise & Ranjbar, A.A. & Gorji, Tahereh B., 2022. "Progress in atmospheric water generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Kwan, Trevor Hocksun & Shen, Yongting & Hu, Tianxiang & Pei, Gang, 2020. "The fuel cell and atmospheric water generator hybrid system for supplying grid-independent power and freshwater," Applied Energy, Elsevier, vol. 279(C).
    5. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Rupam, Tahmid Hasan & Palash, M.L. & Islam, Md Amirul & Saha, Bidyut Baran, 2022. "Transitional metal-doped aluminum fumarates for ultra-low heat driven adsorption cooling systems," Energy, Elsevier, vol. 238(PC).
    7. Schauf, Magnus & Schwenen, Sebastian, 2023. "System price dynamics for battery storage," Energy Policy, Elsevier, vol. 183(C).
    8. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    9. Shiyu Zhou & Xiaoqian Wang & Hanbing Jia & Jiying Liu, 2024. "Optimal Design of Air Treatment for an Adsorption Water-Harvesting System," Sustainability, MDPI, vol. 16(14), pages 1-19, July.
    10. Adeline Gu'eret & Wolf-Peter Schill & Carlos Gaete-Morales, 2024. "Impacts of electric carsharing on a power sector with variable renewables," Papers 2402.19380, arXiv.org, revised Oct 2024.
    11. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
    12. Zhang, Qiaoxin & Tu, Rang & Liu, Mengdan, 2023. "Performance analyses and optimization studies of desiccant wheel assisted atmospheric water harvesting system under global ambient conditions," Energy, Elsevier, vol. 283(C).
    13. Murat Tasci & Hidir Duzkaya, 2025. "Estimation of Working Error of Electricity Meter Using Artificial Neural Network (ANN)," Energies, MDPI, vol. 18(5), pages 1-16, March.
    14. Stephan Peter & Matthias Schirmer & Philippe Lathan & Georg Stimpfl & Bashar Ibrahim, 2022. "Performance Analysis of a Solar-Powered Multi-Purpose Supply Container," Sustainability, MDPI, vol. 14(9), pages 1-13, May.
    15. López Prol, Javier & Zilberman, David, 2023. "No alarms and no surprises: Dynamics of renewable energy curtailment in California," Energy Economics, Elsevier, vol. 126(C).
    16. Helmo K. Morales Paredes & Matheus Branco Arcadepani & Alexandre Candido Moreira & Flávio A. Serrão Gonçalves & Fernando Pinhabel Marafão, 2023. "Enlightening Load Modeling by Means of Power Factor Decompositions," Energies, MDPI, vol. 16(10), pages 1-22, May.
    17. van Ouwerkerk, Jonas & Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Torralba-Díaz, Laura & Bußar, Christian, 2022. "Impacts of power sector model features on optimal capacity expansion: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Dogan, Eyup & Chishti, Muhammad Zubair & Karimi Alavijeh, Nooshin & Tzeremes, Panayiotis, 2022. "The roles of technology and Kyoto Protocol in energy transition towards COP26 targets: Evidence from the novel GMM-PVAR approach for G-7 countries," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    19. Li, Lei & Huang, Haihong & Zou, Xiang & Zhao, Fu & Li, Guishan & Liu, Zhifeng, 2021. "An energy-efficient service-oriented energy supplying system and control for multi-machine in the production line," Applied Energy, Elsevier, vol. 286(C).
    20. Franz Harke & Philipp Otto, 2023. "Solar Self-Sufficient Households as a Driving Factor for Sustainability Transformation," Sustainability, MDPI, vol. 15(3), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1839-:d:1628550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.