IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2686-d1096093.html
   My bibliography  Save this article

Progress and Prospects of Air Water Harvesting System for Remote Areas: A Comprehensive Review

Author

Listed:
  • Mohammed Sanjid Thavalengal

    (Mechanical and Construction Engineering Department, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK)

  • Muhammad Ahmad Jamil

    (Mechanical and Construction Engineering Department, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK)

  • Muhammad Mehroz

    (Mechanical and Construction Engineering Department, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK)

  • Ben Bin Xu

    (Mechanical and Construction Engineering Department, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK)

  • Haseeb Yaqoob

    (Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Muhammad Sultan

    (Department of Agricultural Engineering, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan)

  • Nida Imtiaz

    (Mechanical and Construction Engineering Department, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
    School of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru 80990, Malaysia)

  • Muhammad Wakil Shahzad

    (Mechanical and Construction Engineering Department, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK)

Abstract

Life is dependent on water. However, in terms of the potential effects, water scarcity is quickly emerging as one of the most critical problems in the world. To access more fresh water for drinking, sanitation, and irrigation, water can be harvested from different forms of water on earth. Atmospheric harvesting is the best alternative for producing fresh water for everyday life and reducing global water shortages. To date, many modern technologies have been introduced for this application, with several prototypes being demonstrated. Thus, this study explores the potential benefits of the current atmospheric water harvesting systems in terms of their modes, atmospheric conditions, and production rate and examines the key factors that affect the efficiency of atmospheric water harvesting, such as temperature and humidity. According to the studies, there has been a significant advancement in energy harvesting and conversion technology, along with atmospheric water harvesting, over the past few years, including new mechanisms and technical paths. However, there are still many obstacles; in particular, most of the technologies depend on outdoor conditions. In order to overcome this issue, new directions need to be investigated. Here, we discuss the principles, advantages, limitations, and potential applications of these technologies.

Suggested Citation

  • Mohammed Sanjid Thavalengal & Muhammad Ahmad Jamil & Muhammad Mehroz & Ben Bin Xu & Haseeb Yaqoob & Muhammad Sultan & Nida Imtiaz & Muhammad Wakil Shahzad, 2023. "Progress and Prospects of Air Water Harvesting System for Remote Areas: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-27, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2686-:d:1096093
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2686/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2686/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Magrini & Lucia Cattani & Marco Cartesegna & Lorenza Magnani, 2017. "Water Production from Air Conditioning Systems: Some Evaluations about a Sustainable Use of Resources," Sustainability, MDPI, vol. 9(8), pages 1-17, July.
    2. Talaat, M.A. & Awad, M.M. & Zeidan, E.B. & Hamed, A.M., 2018. "Solar-powered portable apparatus for extracting water from air using desiccant solution," Renewable Energy, Elsevier, vol. 119(C), pages 662-674.
    3. Kazuya Matsumoto & Nobuki Sakikawa & Takashi Miyata, 2018. "Thermo-responsive gels that absorb moisture and ooze water," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    4. Wang, Wenwen & Xie, Sitao & Pan, Quanwen & Dai, Yanjun & Wang, Ruzhu & Ge, Tianshu, 2021. "Air-cooled adsorption-based device for harvesting water from island air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Wei He & Pengkun Yu & Zhongting Hu & Song Lv & Minghui Qin & Cairui Yu, 2019. "Experimental Study and Performance Analysis of a Portable Atmospheric Water Generator," Energies, MDPI, vol. 13(1), pages 1-14, December.
    6. Fathy, Mohamed H. & Awad, Mohamed M. & Zeidan, El-Shafei B. & Hamed, Ahmed M., 2020. "Solar powered foldable apparatus for extracting water from atmospheric air," Renewable Energy, Elsevier, vol. 162(C), pages 1462-1489.
    7. Wang, J.Y. & Wang, R.Z. & Wang, L.W. & Liu, J.Y., 2017. "A high efficient semi-open system for fresh water production from atmosphere," Energy, Elsevier, vol. 138(C), pages 542-551.
    8. Salehi, Ali Akbar & Ghannadi-Maragheh, Mohammad & Torab-Mostaedi, Meisam & Torkaman, Rezvan & Asadollahzadeh, Mehdi, 2020. "A review on the water-energy nexus for drinking water production from humid air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    9. Wang, J.Y. & Wang, R.Z. & Tu, Y.D. & Wang, L.W., 2018. "Universal scalable sorption-based atmosphere water harvesting," Energy, Elsevier, vol. 165(PA), pages 387-395.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jasmina Locke & Jacinta Dsilva & Saniya Zarmukhambetova, 2023. "Decarbonization Strategies in the UAE Built Environment: An Evidence-Based Analysis Using COP26 and COP27 Recommendations," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
    2. Lucia Cattani & Paolo Cattani & Anna Magrini & Roberto Figoni & Daniele Dondi & Dhanalakshmi Vadivel, 2023. "Suitability and Energy Sustainability of Atmospheric Water Generation Technology for Green Hydrogen Production," Energies, MDPI, vol. 16(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tashtoush, Bourhan & Alshoubaki, Anas, 2023. "Atmospheric water harvesting: A review of techniques, performance, renewable energy solutions, and feasibility," Energy, Elsevier, vol. 280(C).
    2. Salehi, Ali Akbar & Ghannadi-Maragheh, Mohammad & Torab-Mostaedi, Meisam & Torkaman, Rezvan & Asadollahzadeh, Mehdi, 2020. "A review on the water-energy nexus for drinking water production from humid air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    3. Shafeian, Nafise & Ranjbar, A.A. & Gorji, Tahereh B., 2022. "Progress in atmospheric water generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Gordeeva, Larisa G. & Solovyeva, Marina V. & Sapienza, Alessio & Aristov, Yuri I., 2020. "Potable water extraction from the atmosphere: Potential of MOFs," Renewable Energy, Elsevier, vol. 148(C), pages 72-80.
    5. He Shan & Chunfeng Li & Zhihui Chen & Wenjun Ying & Primož Poredoš & Zhanyu Ye & Quanwen Pan & Jiayun Wang & Ruzhu Wang, 2022. "Exceptional water production yield enabled by batch-processed portable water harvester in semi-arid climate," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Tu, Rang & Hwang, Yunho, 2020. "Reviews of atmospheric water harvesting technologies," Energy, Elsevier, vol. 201(C).
    7. Fathy, Mohamed H. & Awad, Mohamed M. & Zeidan, El-Shafei B. & Hamed, Ahmed M., 2020. "Solar powered foldable apparatus for extracting water from atmospheric air," Renewable Energy, Elsevier, vol. 162(C), pages 1462-1489.
    8. Pokorny, Nikola & Shemelin, Viacheslav & Novotny, Jiri, 2022. "Experimental study and performance analysis of a mobile autonomous atmospheric water generator designed for arid climatic conditions," Energy, Elsevier, vol. 250(C).
    9. Wang, Wenwen & Xie, Sitao & Pan, Quanwen & Dai, Yanjun & Wang, Ruzhu & Ge, Tianshu, 2021. "Air-cooled adsorption-based device for harvesting water from island air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Wang, Chenxi & Zou, Hao & Du, Shuai & Huang, Danfeng & Wang, Ruzhu, 2023. "Water and heat recovery for greenhouses in cold climates using a solid sorption system," Energy, Elsevier, vol. 270(C).
    11. Rupam, Tahmid Hasan & Palash, M.L. & Islam, Md Amirul & Saha, Bidyut Baran, 2022. "Transitional metal-doped aluminum fumarates for ultra-low heat driven adsorption cooling systems," Energy, Elsevier, vol. 238(PC).
    12. Entezari, A. & Wang, R.Z. & Zhao, S. & Mahdinia, E. & Wang, J.Y. & Tu, Y.D. & Huang, D.F., 2019. "Sustainable agriculture for water-stressed regions by air-water-energy management," Energy, Elsevier, vol. 181(C), pages 1121-1128.
    13. Lucia Cattani & Paolo Cattani & Anna Magrini, 2021. "Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment," Energies, MDPI, vol. 14(14), pages 1-17, July.
    14. Nilofar Asim & Marzieh Badiei & Masita Mohammad & Halim Razali & Armin Rajabi & Lim Chin Haw & Mariyam Jameelah Ghazali, 2022. "Sustainability of Heating, Ventilation and Air-Conditioning (HVAC) Systems in Buildings—An Overview," IJERPH, MDPI, vol. 19(2), pages 1-16, January.
    15. Kwan, Trevor Hocksun & Shen, Yongting & Hu, Tianxiang & Pei, Gang, 2020. "The fuel cell and atmospheric water generator hybrid system for supplying grid-independent power and freshwater," Applied Energy, Elsevier, vol. 279(C).
    16. Shan, He & Poredoš, Primož & Zou, Hao & Lv, Haotian & Wang, Ruzhu, 2023. "Perspectives for urban microenvironment sustainability enabled by decentralized water-energy-food harvesting," Energy, Elsevier, vol. 282(C).
    17. Husam S. Al-Duais & Muhammad Azzam Ismail & Zakaria Alcheikh Mahmoud Awad & Karam M. Al-Obaidi, 2022. "Performance Evaluation of Solar-Powered Atmospheric Water Harvesting Using Different Glazing Materials in the Tropical Built Environment: An Experimental Study," Energies, MDPI, vol. 15(9), pages 1-19, April.
    18. Vasco Correia & Pedro D. Silva & Luís C. Pires, 2023. "Energy Requirements and Photovoltaic Area for Atmospheric Water Generation in Different Locations: Lisbon, Pretoria, and Riyadh," Energies, MDPI, vol. 16(13), pages 1-27, July.
    19. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Yinglai Hou & Zhizhi Sheng & Chen Fu & Jie Kong & Xuetong Zhang, 2022. "Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2686-:d:1096093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.