IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i15d10.1007_s11269-023-03644-4.html
   My bibliography  Save this article

Evaluating Mesh Geometry and Shade Coefficient for Fog Harvesting Collectors

Author

Listed:
  • Abdullah A. Elshennawy

    (Mansoura University
    Horus University)

  • Magdy Y. Abdelaal

    (Mansoura University)

  • Ahmed M. Hamed

    (Mansoura University)

  • Mohamed M. Awad

    (Mansoura University)

Abstract

The most valuable resource for sustaining life on earth is water. In dry and semi-arid areas, the problem of water scarcity can be resolved with the aid of fog collection techniques employing fog collectors. Fog collection is greatly influenced by a variety of factors. Some are design parameters, while others depend on ambient circumstances. Geometry and the mesh’s shade coefficient are important design factors that can be modified and have an impact on the rate at which fog collects in fog collectors. The shape of the mesh holes and the process used to create the mesh serve to identify geometry and measure the shade coefficient. In this paper, a straightforward mathematical technique is proposed to make it easier to calculate the shade coefficient of various mesh shapes used in fog harvesting and to provide an approximation of the mesh volume and cost. Five alternative geometries were used: the rectangular mesh, square mesh, Raschel mesh, triangular mesh, and hexagonal mesh. The current simple method will facilitate the design of the fog mesh collector and can assist in achieving the ideal shade coefficient and most effective mesh geometry for fog harvesting. Rectangular meshes were solely used as an example to evaluate the results. Stainless steel rectangular meshes with various shade coefficients were tested for fog collection, and the amount of water collected by each mesh varied. It was concluded that the optimum shade coefficient ranged 50–60% for fog collection.

Suggested Citation

  • Abdullah A. Elshennawy & Magdy Y. Abdelaal & Ahmed M. Hamed & Mohamed M. Awad, 2023. "Evaluating Mesh Geometry and Shade Coefficient for Fog Harvesting Collectors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(15), pages 6107-6126, December.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:15:d:10.1007_s11269-023-03644-4
    DOI: 10.1007/s11269-023-03644-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03644-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03644-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ghassan Al-hassan, 2009. "Fog Water Collection Evaluation in Asir Region–Saudi Arabia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2805-2813, October.
    2. Fathy, Mohamed H. & Awad, Mohamed M. & Zeidan, El-Shafei B. & Hamed, Ahmed M., 2020. "Solar powered foldable apparatus for extracting water from atmospheric air," Renewable Energy, Elsevier, vol. 162(C), pages 1462-1489.
    3. Nastaran Chitsaz & Ali Azarnivand, 2017. "Water Scarcity Management in Arid Regions Based on an Extended Multiple Criteria Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 233-250, January.
    4. Maha Alotaibi & Nawaf S. Alhajeri & Fahad M. Al-Fadhli & Salem Al Jabri & Mohamed Gabr, 2023. "Impact of Climate Change on Crop Irrigation Requirements in Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 1965-1984, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amr Elbrashy & Kambiz Vafai & Abdullah Elshennawy & Manar Ayman & Ahmed Elgebaly & Maher Rashad, 2025. "Harvesting of Condensate Water from Air Conditioners in Large Institutions as a Sustainable Resource," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(10), pages 5289-5312, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Ghonemy, A.M.K., 2012. "Fresh water production from/by atmospheric air for arid regions, using solar energy: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6384-6422.
    2. Hamzeh Soltanali & Mehdi Khojastehpour & Siamak Kheybari, 2023. "Evaluating the critical success factors for maintenance management in agro-industries using multi-criteria decision-making techniques," Operations Management Research, Springer, vol. 16(2), pages 949-968, June.
    3. Fessehaye, Mussie & Abdul-Wahab, Sabah A. & Savage, Michael J. & Kohler, Thomas & Gherezghiher, Tseggai & Hurni, Hans, 2014. "Fog-water collection for community use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 52-62.
    4. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    5. Neda Tiraieyari & Roya Karami & Robert M. Ricard & Mohammad Badsar, 2019. "Influences on the Implementation of Community Urban Agriculture: Insights from Agricultural Professionals," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    6. Imteaz, Monzur Alam & Al-hassan, Ghassan & Shanableh, Abdallah & Naser, Jamal, 2011. "Development of a mathematical model for the quantification of fog-collection," Resources, Conservation & Recycling, Elsevier, vol. 57(C), pages 10-14.
    7. Chao Bao & Dongmei He, 2019. "Scenario Modeling of Urbanization Development and Water Scarcity Based on System Dynamics: A Case Study of Beijing–Tianjin–Hebei Urban Agglomeration, China," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    8. Mohammed Sanjid Thavalengal & Muhammad Ahmad Jamil & Muhammad Mehroz & Ben Bin Xu & Haseeb Yaqoob & Muhammad Sultan & Nida Imtiaz & Muhammad Wakil Shahzad, 2023. "Progress and Prospects of Air Water Harvesting System for Remote Areas: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-27, March.
    9. Geerten Van de Kaa & Daniel Scholten & Jafar Rezaei & Christine Milchram, 2017. "The Battle between Battery and Fuel Cell Powered Electric Vehicles: A BWM Approach," Energies, MDPI, vol. 10(11), pages 1-13, October.
    10. Reif, John H. & Alhalabi, Wadee, 2015. "Solar-thermal powered desalination: Its significant challenges and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 152-165.
    11. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Selecting the Optimal Micro-Grid Planning Program Using a Novel Multi-Criteria Decision Making Model Based on Grey Cumulative Prospect Theory," Energies, MDPI, vol. 11(7), pages 1-24, July.
    12. Morteza Yazdani & Prasenjit Chatterjee & Maria Jose Montero-Simo & Rafael A. Araque-Padilla, 2019. "An Integrated Multi-Attribute Model for Evaluation of Sustainable Mobile Phone," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
    13. Lin, Yu-Pin & Hsu, Chia- Chuan & Wuryandani, Shafira & Yang, Feng-An, 2024. "A decision-making framework based on rain-fed crop suitability, water scarcity, and economic benefits for determination multiple-crop rotation strategy," Agricultural Water Management, Elsevier, vol. 306(C).
    14. Ali Nasiri Khiavi & Seyed Hamidreza Sadeghi & Mehdi Vafakhah, 2024. "Comparative Prioritization of Sub-Watersheds in Flood Generation Using Co-Management Best-Worst Method and Game Theory Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4431-4453, September.
    15. Penjani Hopkins Nyimbili & Turan Erden, 2021. "Comparative evaluation of GIS-based best–worst method (BWM) for emergency facility planning: perspectives from two decision-maker groups," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 1031-1067, January.
    16. Mengbo Zhang & Ranbin Liu & Yaxuan Li, 2022. "Diversifying Water Sources with Atmospheric Water Harvesting to Enhance Water Supply Resilience," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    17. Mi, Xiaomei & Tang, Ming & Liao, Huchang & Shen, Wenjing & Lev, Benjamin, 2019. "The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next?," Omega, Elsevier, vol. 87(C), pages 205-225.
    18. Haoran Zhao & Huiru Zhao & Sen Guo, 2018. "Comprehensive Performance Evaluation of Electricity Grid Corporations Employing a Novel MCDM Model," Sustainability, MDPI, vol. 10(7), pages 1-23, June.
    19. Huseyin Kocak & Atalay Caglar & Gulin Zeynep Oztas, 2018. "Euclidean Best–Worst Method and Its Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1587-1605, September.
    20. Tashtoush, Bourhan & Alshoubaki, Anas, 2023. "Atmospheric water harvesting: A review of techniques, performance, renewable energy solutions, and feasibility," Energy, Elsevier, vol. 280(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:15:d:10.1007_s11269-023-03644-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.