IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v161y2022ics1364032122002398.html
   My bibliography  Save this article

Progress in atmospheric water generation systems: A review

Author

Listed:
  • Shafeian, Nafise
  • Ranjbar, A.A.
  • Gorji, Tahereh B.

Abstract

In recent years, freshwater reserves have been severely depleted. Demand is outpacing supply, and supply is being impacted in terms of both quantity and quality. Therefore, freshwater scarcity is regarded as one of the greatest challenges of our time. During recent decades, the concept of generating fresh water from atmospheric air has been emerging as a promising solution to overcome the global water crisis. The present review attempts to provide a novel and comprehensive classification of various AWG technologies and materials. Each technology has been summarized and discussed. Solar assisted AWG systems with a reliable and cheap energy source are thoroughly explained. Over the last few years, most AWG studies have been shifted towards hybrid/integrated systems which utilize several cooling approaches in order to increase water productivity. The present paper is primarily focused on reviewing hybrid systems with portable and round-the-clock (RTC) application capability. Performance indicators of each system; including water production and energy consumption, thermal efficiency, and coefficient of performance were evaluated and compared. Finally, possible future perspective of implementing atmospheric water generating technologies is proposed.

Suggested Citation

  • Shafeian, Nafise & Ranjbar, A.A. & Gorji, Tahereh B., 2022. "Progress in atmospheric water generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122002398
    DOI: 10.1016/j.rser.2022.112325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122002398
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tu, Rang & Hwang, Yunho, 2020. "Reviews of atmospheric water harvesting technologies," Energy, Elsevier, vol. 201(C).
    2. Ismail, Basel I., 2009. "Design and performance of a transportable hemispherical solar still," Renewable Energy, Elsevier, vol. 34(1), pages 145-150.
    3. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    4. Else Boutkan & Allerd Stikker, 2004. "Enhanced water resource base for sustainable integrated water resource management," Natural Resources Forum, Blackwell Publishing, vol. 28(2), pages 150-154, May.
    5. Salehi, Ali Akbar & Ghannadi-Maragheh, Mohammad & Torab-Mostaedi, Meisam & Torkaman, Rezvan & Asadollahzadeh, Mehdi, 2020. "A review on the water-energy nexus for drinking water production from humid air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    6. Hamed, A.M., 2003. "Experimental investigation on the natural absorption on the surface of sandy layer impregnated with liquid desiccant," Renewable Energy, Elsevier, vol. 28(10), pages 1587-1596.
    7. Hamed, Ahmed M, 2000. "Absorption–regeneration cycle for production of water from air-theoretical approach," Renewable Energy, Elsevier, vol. 19(4), pages 625-635.
    8. Kabeel, A.E., 2007. "Water production from air using multi-shelves solar glass pyramid system," Renewable Energy, Elsevier, vol. 32(1), pages 157-172.
    9. William, G.E. & Mohamed, M.H. & Fatouh, M., 2015. "Desiccant system for water production from humid air using solar energy," Energy, Elsevier, vol. 90(P2), pages 1707-1720.
    10. Zheng, X. & Ge, T.S. & Wang, R.Z., 2014. "Recent progress on desiccant materials for solid desiccant cooling systems," Energy, Elsevier, vol. 74(C), pages 280-294.
    11. Wang, J.Y. & Wang, R.Z. & Wang, L.W. & Liu, J.Y., 2017. "A high efficient semi-open system for fresh water production from atmosphere," Energy, Elsevier, vol. 138(C), pages 542-551.
    12. Hyunho Kim & Sameer R. Rao & Eugene A. Kapustin & Lin Zhao & Sungwoo Yang & Omar M. Yaghi & Evelyn N. Wang, 2018. "Adsorption-based atmospheric water harvesting device for arid climates," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    13. Wang, J.Y. & Wang, R.Z. & Tu, Y.D. & Wang, L.W., 2018. "Universal scalable sorption-based atmosphere water harvesting," Energy, Elsevier, vol. 165(PA), pages 387-395.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. V. Tirupati Rao & Y. Raja Sekhar & Hari Mahesh & Anantha Krishnan Muraleedharan & Derik Charles & N. I. Aljuraide & Ahmed Mohamed Mahmoud Ibrahim & Mahmoud Helal & Ahmed M. Galal & Rokayya Sami & Jong, 2022. "Life Cycle Analysis of Thin-Film Photovoltaic Thermal Systems for Different Tropical Regions," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    2. Zhang, Yu & Wang, Weining & Zheng, Xu & Cai, Jinliang, 2024. "Recent progress on composite desiccants for adsorption-based dehumidification," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fathy, Mohamed H. & Awad, Mohamed M. & Zeidan, El-Shafei B. & Hamed, Ahmed M., 2020. "Solar powered foldable apparatus for extracting water from atmospheric air," Renewable Energy, Elsevier, vol. 162(C), pages 1462-1489.
    2. Talaat, M.A. & Awad, M.M. & Zeidan, E.B. & Hamed, A.M., 2018. "Solar-powered portable apparatus for extracting water from air using desiccant solution," Renewable Energy, Elsevier, vol. 119(C), pages 662-674.
    3. Pokorny, Nikola & Shemelin, Viacheslav & Novotny, Jiri, 2022. "Experimental study and performance analysis of a mobile autonomous atmospheric water generator designed for arid climatic conditions," Energy, Elsevier, vol. 250(C).
    4. Tashtoush, Bourhan & Alshoubaki, Anas, 2023. "Atmospheric water harvesting: A review of techniques, performance, renewable energy solutions, and feasibility," Energy, Elsevier, vol. 280(C).
    5. El-Ghonemy, A.M.K., 2012. "Fresh water production from/by atmospheric air for arid regions, using solar energy: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6384-6422.
    6. Zhang, Qiaoxin & Tu, Rang & Liu, Mengdan, 2023. "Performance analyses and optimization studies of desiccant wheel assisted atmospheric water harvesting system under global ambient conditions," Energy, Elsevier, vol. 283(C).
    7. Mohammed Sanjid Thavalengal & Muhammad Ahmad Jamil & Muhammad Mehroz & Ben Bin Xu & Haseeb Yaqoob & Muhammad Sultan & Nida Imtiaz & Muhammad Wakil Shahzad, 2023. "Progress and Prospects of Air Water Harvesting System for Remote Areas: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-27, March.
    8. Reif, John H. & Alhalabi, Wadee, 2015. "Solar-thermal powered desalination: Its significant challenges and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 152-165.
    9. Salehi, Ali Akbar & Ghannadi-Maragheh, Mohammad & Torab-Mostaedi, Meisam & Torkaman, Rezvan & Asadollahzadeh, Mehdi, 2020. "A review on the water-energy nexus for drinking water production from humid air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    10. Shao, Zhao & Lv, Haotian & Poredoš, Primož & Su, Shiqiang & Sun, Ruikun & Wang, Hongbin & Du, Shuai & Wang, Ruzhu, 2024. "Scaled solar-driven atmospheric water harvester with low-cost composite sorbent," Energy, Elsevier, vol. 302(C).
    11. Zhang, Yu & Wang, Weining & Zheng, Xu & Cai, Jinliang, 2024. "Recent progress on composite desiccants for adsorption-based dehumidification," Energy, Elsevier, vol. 302(C).
    12. Tu, Rang & Hwang, Yunho, 2020. "Reviews of atmospheric water harvesting technologies," Energy, Elsevier, vol. 201(C).
    13. Wang, Wenwen & Xie, Sitao & Pan, Quanwen & Dai, Yanjun & Wang, Ruzhu & Ge, Tianshu, 2021. "Air-cooled adsorption-based device for harvesting water from island air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Chen, Zhihui & Deng, Fangfang & Yang, Xinge & Shao, Zhao & Du, Shuai & Wang, Ruzhu, 2024. "Highly efficient portable atmospheric water harvester with integrated structure design for high yield water production," Energy, Elsevier, vol. 293(C).
    15. Ayyagari, Veeresh & Hwang, Yunho & Kim, Jungho, 2021. "Design and development of potassium formate based atmospheric water harvester," Energy, Elsevier, vol. 221(C).
    16. Rupam, Tahmid Hasan & Palash, M.L. & Islam, Md Amirul & Saha, Bidyut Baran, 2022. "Transitional metal-doped aluminum fumarates for ultra-low heat driven adsorption cooling systems," Energy, Elsevier, vol. 238(PC).
    17. William, G.E. & Mohamed, M.H. & Fatouh, M., 2015. "Desiccant system for water production from humid air using solar energy," Energy, Elsevier, vol. 90(P2), pages 1707-1720.
    18. Wang, J.Y. & Wang, R.Z. & Wang, L.W. & Liu, J.Y., 2017. "A high efficient semi-open system for fresh water production from atmosphere," Energy, Elsevier, vol. 138(C), pages 542-551.
    19. Kwan, Trevor Hocksun & Shen, Yongting & Hu, Tianxiang & Pei, Gang, 2020. "The fuel cell and atmospheric water generator hybrid system for supplying grid-independent power and freshwater," Applied Energy, Elsevier, vol. 279(C).
    20. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122002398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.