IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224005218.html
   My bibliography  Save this article

Highly efficient portable atmospheric water harvester with integrated structure design for high yield water production

Author

Listed:
  • Chen, Zhihui
  • Deng, Fangfang
  • Yang, Xinge
  • Shao, Zhao
  • Du, Shuai
  • Wang, Ruzhu

Abstract

Sorption-based atmospheric water harvesting (SAWH) as an appealing way to address global water shortage can obtain water from air anytime and anywhere. However, achieving liter-scale water yield by portable device for daily demand is still a challenge. Here, a 7.5-L portable atmospheric water harvester with optimized structure design was proposed. By adopting central heating and radiation heat shielding strategy to minimize heat losses during desorption process and utilizing a batch-process operation model, the device presented superior productivity of 1150 gwater/day with low energy consumption of 1.7 kWh/L under field test. This is the first demonstration to promote daily water yield of small-size SAWH device to an order of 1000 g with lower energy consumption compared with existing active SAWH studies. Optimized heat and mass transfer within compact structure enabled the water yield per unit volume and weight of the device reaching milestone values of 152.5 gwater/Ldevice/day and 199.4 gwater/kgdevice/day. This remarkable performance motivated the feasibility of distributed freshwater production and pushed SAWH technology one step closer to the practical applications.

Suggested Citation

  • Chen, Zhihui & Deng, Fangfang & Yang, Xinge & Shao, Zhao & Du, Shuai & Wang, Ruzhu, 2024. "Highly efficient portable atmospheric water harvester with integrated structure design for high yield water production," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224005218
    DOI: 10.1016/j.energy.2024.130749
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224005218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130749?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224005218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.