IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1788-d1626898.html
   My bibliography  Save this article

Three-Dimensional Solar Harvesting with Transparent Spectral Selective Photovoltaics in Agrivoltaics

Author

Listed:
  • Donglu Shi

    (The Materials Science and Engineering Program, Department Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45229, USA
    Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45229, USA)

Abstract

Although photovoltaic (PV) solar cells have been widely used for a variety of applications, several critical issues are yet to be addressed, including further enhanced power conversion efficiency (PCE) and their 2D solar harvesting with limited land availability. It has been reported that traditional PV installations require approximately 22,000 square miles to power the entire United States—posing a significant barrier, particularly in urban and agricultural settings. A unique dual modality of PV system has been proposed and implemented for both power generation and crop photosynthesis, namely, agrivoltaics. This system installs PV panels over the crops while harvesting solar for PV electricity generation and, at the same time, integrates with crop cultivation, which is a promising solution to optimize land utilization. However, for opaque PV panels, sunlight is often obstructed, potentially impacting plant growth and yield. To address this critical issue, a 3D solar harvesting concept has been proposed and experimentally investigated. By placing multiple layers of transparent PV panels parallel, sunlight can penetrate multiple layers and generate electricity on each PV, significantly enhancing the solar harvesting surface area. Most importantly, sunlight can also be collected by the crops underneath for effective photosynthesis. Among various PV materials, dye-sensitized solar cells (DSSCs) using porphyrin-based dyes have demonstrated potential for spectral modulation, optimizing both electricity generation and crop illumination. This review focuses on a novel approach to a 3D solar harvesting system via a multi-layered PV architecture for agrivoltaics. Also discussed are the current challenges in agrivoltaics, spectral selective mechanisms, and 3D solar harvesting architecture that show promise for sustainable energy production and land-efficient solar power deployment.

Suggested Citation

  • Donglu Shi, 2025. "Three-Dimensional Solar Harvesting with Transparent Spectral Selective Photovoltaics in Agrivoltaics," Energies, MDPI, vol. 18(7), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1788-:d:1626898
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1788/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1788/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brudermann, Thomas & Reinsberger, Kathrin & Orthofer, Anita & Kislinger, Martin & Posch, Alfred, 2013. "Photovoltaics in agriculture: A case study on decision making of farmers," Energy Policy, Elsevier, vol. 61(C), pages 96-103.
    2. Jou Lin & Mengyao Lyu & Donglu Shi, 2023. "3D Solar Harvesting and Energy Generation via Multilayers of Transparent Porphyrin and Iron Oxide Thin Films," Energies, MDPI, vol. 16(7), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Briguglio, Marie & Formosa, Glenn, 2017. "When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights," Energy Policy, Elsevier, vol. 108(C), pages 154-162.
    2. Zemo, Kahsay Haile & Termansen, Mette, 2018. "Farmers’ willingness to participate in collective biogas investment: A discrete choice experiment study," Resource and Energy Economics, Elsevier, vol. 52(C), pages 87-101.
    3. Palm, Alvar & Lantz, Björn, 2020. "Information dissemination and residential solar PV adoption rates: The effect of an information campaign in Sweden," Energy Policy, Elsevier, vol. 142(C).
    4. repec:grz:wpsses:2016-02 is not listed on IDEAS
    5. Reinsberger, Kathrin & Brudermann, Thomas & Hatzl, Stefanie & Fleiß, Eva & Posch, Alfred, 2015. "Photovoltaic diffusion from the bottom-up: Analytical investigation of critical factors," Applied Energy, Elsevier, vol. 159(C), pages 178-187.
    6. Kiunke, Theresa & Gemignani, Natalia & Malheiro, Pedro & Brudermann, Thomas, 2022. "Key factors influencing onshore wind energy development: A case study from the German North Sea region," Energy Policy, Elsevier, vol. 165(C).
    7. Angel Carreño-Ortega & Emilio Galdeano-Gómez & Juan Carlos Pérez-Mesa & María Del Carmen Galera-Quiles, 2017. "Policy and Environmental Implications of Photovoltaic Systems in Farming in Southeast Spain: Can Greenhouses Reduce the Greenhouse Effect?," Energies, MDPI, vol. 10(6), pages 1-24, May.
    8. Jian Chen & Yiping Liu & Lingjun Wang, 2019. "Research on Coupling Coordination Development for Photovoltaic Agriculture System in China," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    9. Michels, Marius & Bonke, Vanessa & Mußhoff, Oliver, 2019. "Understanding the adoption of crop protection smartphone apps: An application of the Unified Theory of Acceptance and Use of Technology," DARE Discussion Papers 1905, Georg-August University of Göttingen, Department of Agricultural Economics and Rural Development (DARE).
    10. Julio Pombo-Romero & Hans Langeveld & Marta Fernández-Redondo, 2023. "Diffusion of renewable energy technology on Spanish farms: drivers and barriers," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11769-11787, October.
    11. Hecher, Maria & Vilsmaier, Ulli & Akhavan, Roya & Binder, Claudia R., 2016. "An integrative analysis of energy transitions in energy regions: A case study of ökoEnergieland in Austria," Ecological Economics, Elsevier, vol. 121(C), pages 40-53.
    12. Udit Chawla & Rajesh Mohnot & Akinola Fadahunsi & Devika Mulchandani, 2024. "The Bright Revolution: Accelerating Adoption of Solar Energy in India’s Dynamic Landscape," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 226-233, July.
    13. Giuseppe Timpanaro & Gaetano Chinnici & Roberta Selvaggi & Giulio Cascone & Vera Teresa Foti & Alessandro Scuderi, 2023. "Farmer?s adoption of agricultural insurance for Mediterranean crops as an innovative behavior," Economia agro-alimentare, FrancoAngeli Editore, vol. 25(2), pages 155-188.
    14. Li, Bo & Ding, Junqi & Wang, Jieqiong & Zhang, Biao & Zhang, Lingxian, 2021. "Key factors affecting the adoption willingness, behavior, and willingness-behavior consistency of farmers regarding photovoltaic agriculture in China," Energy Policy, Elsevier, vol. 149(C).
    15. Karakaya, Emrah & Sriwannawit, Pranpreya, 2015. "Barriers to the adoption of photovoltaic systems: The state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 60-66.
    16. Rydehell, Hanna & Lantz, Björn & Mignon, Ingrid & Lindahl, Johan, 2024. "The impact of solar PV subsidies on investment over time - the case of Sweden," Energy Economics, Elsevier, vol. 133(C).
    17. Zbigniew Brodziński & Katarzyna Brodzińska & Mikołaj Szadziun, 2021. "Photovoltaic Farms—Economic Efficiency of Investments in North-East Poland," Energies, MDPI, vol. 14(8), pages 1-17, April.
    18. Palm, A., 2020. "Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    19. Yamashiro, Ririka & Mori, Akihisa, 2023. "Combined third-party ownership and aggregation business model for the adoption of rooftop solar PV–battery systems: Implications from the case of Miyakojima Island, Japan," Energy Policy, Elsevier, vol. 173(C).
    20. Irie, Noriko & Kawahara, Naoko & Esteves, Ana Maria, 2019. "Sector-wide social impact scoping of agrivoltaic systems: A case study in Japan," Renewable Energy, Elsevier, vol. 139(C), pages 1463-1476.
    21. Korcaj, Liridon & Hahnel, Ulf J.J. & Spada, Hans, 2015. "Intentions to adopt photovoltaic systems depend on homeowners' expected personal gains and behavior of peers," Renewable Energy, Elsevier, vol. 75(C), pages 407-415.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1788-:d:1626898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.