IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1677-d1621811.html
   My bibliography  Save this article

Data-Driven Energy Analysis for a Set of Rooftop Photovoltaic Systems Featuring Different Installation Characteristics: A Pairwise, Early-Life Performance Comparison

Author

Listed:
  • Konstantinos Christopoulos

    (Soft Energy Applications & Environmental Protection Lab, Mechanical Engineering Department, University of West Attica, 250 Thivon & P. Ralli Street, 12241 Athens, Greece)

  • Dimitrios Zafirakis

    (Soft Energy Applications & Environmental Protection Lab, Mechanical Engineering Department, University of West Attica, 250 Thivon & P. Ralli Street, 12241 Athens, Greece)

  • Kosmas A. Kavadias

    (Soft Energy Applications & Environmental Protection Lab, Mechanical Engineering Department, University of West Attica, 250 Thivon & P. Ralli Street, 12241 Athens, Greece)

  • John K. Kaldellis

    (Soft Energy Applications & Environmental Protection Lab, Mechanical Engineering Department, University of West Attica, 250 Thivon & P. Ralli Street, 12241 Athens, Greece)

Abstract

The specific research presents a detailed, data-driven energy analysis on the early-life operation of two rooftop photovoltaic (PV) systems. The two PV systems examined are operated under the Net Metering scheme and are found in close proximity, within the geographical boundaries of a small-scale remote island on the Southeastern part of the Aegean Sea, Greece. The systems feature similar PV technology and capacity, i.e., 3.5 kW p vs. 5 kW p , but differ in terms of installation characteristics; thus, they offer an interesting case for pairwise comparison. Supported by the exploitation of a wealthy set of data, a detailed energy analysis is conducted, with our results providing useful insights on the seasonal performance variation of the two systems and its determinants, reflecting on the different siting and installation characteristics of the former.

Suggested Citation

  • Konstantinos Christopoulos & Dimitrios Zafirakis & Kosmas A. Kavadias & John K. Kaldellis, 2025. "Data-Driven Energy Analysis for a Set of Rooftop Photovoltaic Systems Featuring Different Installation Characteristics: A Pairwise, Early-Life Performance Comparison," Energies, MDPI, vol. 18(7), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1677-:d:1621811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1677/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1677/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Genave, Anna & Blancard, Stéphane & Garabedian, Sabine, 2020. "An assessment of energy vulnerability in Small Island Developing States," Ecological Economics, Elsevier, vol. 171(C).
    2. Kaldellis, John & Zafirakis, Dimitrios, 2012. "Experimental investigation of the optimum photovoltaic panels’ tilt angle during the summer period," Energy, Elsevier, vol. 38(1), pages 305-314.
    3. Ioannidis, Alexis & Chalvatzis, Konstantinos J. & Li, Xin & Notton, Gilles & Stephanides, Phedeas, 2019. "The case for islands’ energy vulnerability: Electricity supply diversity in 44 global islands," Renewable Energy, Elsevier, vol. 143(C), pages 440-452.
    4. Kaldellis, J.K. & Zafirakis, D., 2007. "Present situation and future prospects of electricity generation in Aegean Archipelago islands," Energy Policy, Elsevier, vol. 35(9), pages 4623-4639, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis G. Kosmopoulos & Marios T. Mechilis & Panagiota Kaoura, 2022. "Solar Energy Production Planning in Antikythera: Adequacy Scenarios and the Effect of the Atmospheric Parameters," Energies, MDPI, vol. 15(24), pages 1-19, December.
    2. Liu, Yang & Dong, Kangyin & Jiang, Qingzhe, 2023. "Assessing energy vulnerability and its impact on carbon emissions: A global case," Energy Economics, Elsevier, vol. 119(C).
    3. Tzanes, G. & Zafirakis, D. & Makropoulos, C. & Kaldellis, J.K. & Stamou, A.I., 2023. "Energy vulnerability and the exercise of a data-driven analysis protocol: A comparative assessment on power generation aspects for the non-interconnected islands of Greece," Energy Policy, Elsevier, vol. 177(C).
    4. Dong, Kangyin & Jiang, Qingzhe & Liu, Yang & Shen, Zhiyang & Vardanyan, Michael, 2024. "Is energy aid allocated fairly? A global energy vulnerability perspective," World Development, Elsevier, vol. 173(C).
    5. Andrea A. Eras-Almeida & Miguel A. Egido-Aguilera, 2020. "What Is Still Necessary for Supporting the SDG7 in the Most Vulnerable Contexts?," Sustainability, MDPI, vol. 12(17), pages 1-28, September.
    6. Guo, Siyu & Walsh, Timothy Michael & Peters, Marius, 2013. "Vertically mounted bifacial photovoltaic modules: A global analysis," Energy, Elsevier, vol. 61(C), pages 447-454.
    7. Giatrakos, G.P. & Tsoutsos, T.D. & Mouchtaropoulos, P.G. & Naxakis, G.D. & Stavrakakis, G., 2009. "Sustainable energy planning based on a stand-alone hybrid renewableenergy/hydrogen power system: Application in Karpathos island, Greece," Renewable Energy, Elsevier, vol. 34(12), pages 2562-2570.
    8. Mentis, Dimitrios & Karalis, George & Zervos, Arthouros & Howells, Mark & Taliotis, Constantinos & Bazilian, Morgan & Rogner, Holger, 2016. "Desalination using renewable energy sources on the arid islands of South Aegean Sea," Energy, Elsevier, vol. 94(C), pages 262-272.
    9. Zafirakis, D. & Chalvatzis, K. & Kaldellis, J.K., 2013. "“Socially just” support mechanisms for the promotion of renewable energy sources in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 478-493.
    10. Armendariz-Lopez, J.F. & Luna-Leon, A. & Gonzalez-Trevizo, M.E. & Arena-Granados, A.P. & Bojorquez-Morales, G., 2016. "Life cycle cost of photovoltaic technologies in commercial buildings in Baja California, Mexico," Renewable Energy, Elsevier, vol. 87(P1), pages 564-571.
    11. Yukun Cao & Jingxuan Cai & Xiangyue Liu, 2024. "RETRACTED ARTICLE: Advancing toward a sustainable future: assessing the impact of energy transition, circular economy, and international trade on carbon footprint," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-26, April.
    12. Lingling Zhou & Tao Shi & Qian Zhou, 2023. "Is ICT Development Conducive to Reducing the Vulnerability of Low-Carbon Energy? Evidence from OECD Countries," IJERPH, MDPI, vol. 20(3), pages 1-22, January.
    13. Kaldellis, J.K., 2011. "Critical evaluation of financial supporting schemes for wind-based projects: Case study Greece," Energy Policy, Elsevier, vol. 39(5), pages 2490-2500, May.
    14. Deb, Dipankar & Brahmbhatt, Nisarg L., 2018. "Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3306-3313.
    15. Georgios K. Vasios & Andreas Y. Troumbis & Yiannis Zevgolis & Maria N. Hatziantoniou & Marios F. Balis, 2019. "Environmental choices in the era of ecological modernization: siting of common interest facilities as a multi-alternative decision field problem in insular setups," Environment Systems and Decisions, Springer, vol. 39(1), pages 49-64, March.
    16. Reza Alayi & Mahdi Mohkam & Seyed Reza Seyednouri & Mohammad Hossein Ahmadi & Mohsen Sharifpur, 2021. "Energy/Economic Analysis and Optimization of On-Grid Photovoltaic System Using CPSO Algorithm," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    17. Vivoda, Vlado, 2022. "LNG export diversification and demand security: A comparative study of major exporters," Energy Policy, Elsevier, vol. 170(C).
    18. Pilar Murias & Beatriz Valcárcel-Aguiar & Rosa María Regueiro-Ferreira, 2020. "A Territorial Estimate for Household Energy Vulnerability: An Application for Spain," Sustainability, MDPI, vol. 12(15), pages 1-21, July.
    19. Wan, Kaidi & Liu, Bing-Yue & Fan, Ying & Ikonnikova, Svetlana A., 2024. "Modelling and assessing dynamic energy supply resilience to disruption events: An oil supply disruption case in China," Energy Economics, Elsevier, vol. 140(C).
    20. Njangang, Henri & Padhan, Hemachandra & Tiwari, Aviral Kumar, 2024. "From aid to resilience: Assessing the impact of climate finance on energy vulnerability in developing countries," Energy Economics, Elsevier, vol. 134(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1677-:d:1621811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.