IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1602-d1618652.html
   My bibliography  Save this article

Transmission and Generation Expansion Planning Considering Virtual Power Lines/Plants, Distributed Energy Injection and Demand Response Flexibility from TSO-DSO Interface

Author

Listed:
  • Flávio Arthur Leal Ferreira

    (UFPR—Department of Electrical Engineering, Universidade Federal do Paraná, Curitiba 81531-980, Brazil)

  • Clodomiro Unsihuay-Vila

    (UFPR—Department of Electrical Engineering, Universidade Federal do Paraná, Curitiba 81531-980, Brazil)

  • Rafael A. Núñez-Rodríguez

    (School Electronic Engineering, Unidades Tecnológicas de Santander, Bucaramanga 680005, Colombia)

Abstract

This article presents a computational model for transmission and generation expansion planning considering the impact of virtual power lines, which consists of the investment in energy storage in the transmission system as well as being able to determine the reduction and postponement of investments in transmission lines. The flexibility from the TSO-DSO interconnection is also modeled, analyzing its impact on system expansion investments. Flexibility is provided to the AC power flow transmission network model by distribution systems connected at the transmission system nodes. The transmission system flexibility requirements are provided by expansion planning performed by the connected DSOs. The objective of the model is to minimize the overall cost of system operation and investments in transmission, generation and flexibility requirements. A data-driven distributionally robust optimization-DDDRO approach is proposed to consider uncertainties of demand and variable renewable energy generation. The column and constraint generation algorithm and duality-free decomposition method are adopted. Case studies using a Garver 6-node system and the IEEE RTS-GMLC were carried out to validate the model and evaluate the values and impacts of local flexibility on transmission system expansion. The results obtained demonstrate a reduction in total costs, an improvement in the efficient use of the transmission system and an improvement in the locational marginal price indicator of the transmission system.

Suggested Citation

  • Flávio Arthur Leal Ferreira & Clodomiro Unsihuay-Vila & Rafael A. Núñez-Rodríguez, 2025. "Transmission and Generation Expansion Planning Considering Virtual Power Lines/Plants, Distributed Energy Injection and Demand Response Flexibility from TSO-DSO Interface," Energies, MDPI, vol. 18(7), pages 1-33, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1602-:d:1618652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1602/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1602/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Backe, Stian & Ahang, Mohammadreza & Tomasgard, Asgeir, 2021. "Stable stochastic capacity expansion with variable renewables: Comparing moment matching and stratified scenario generation sampling," Applied Energy, Elsevier, vol. 302(C).
    2. Yin, Xin & Chen, Haoyong & Liang, Zipeng & Zhu, Yanjin, 2023. "A Flexibility-oriented robust transmission expansion planning approach under high renewable energy resource penetration," Applied Energy, Elsevier, vol. 351(C).
    3. Liang, Z. & Chen, H. & Chen, S. & Lin, Z. & Kang, C., 2019. "Probability-driven transmission expansion planning with high-penetration renewable power generation: A case study in northwestern China," Applied Energy, Elsevier, vol. 255(C).
    4. Ali Toolabi Moghadam & Bahram Bahramian & Farid Shahbaazy & Ali Paeizi & Tomonobu Senjyu, 2023. "Stochastic Flexible Power System Expansion Planning, Based on the Demand Response Considering Consumption and Generation Uncertainties," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    5. Ruiz, C. & Conejo, A.J., 2015. "Robust transmission expansion planning," European Journal of Operational Research, Elsevier, vol. 242(2), pages 390-401.
    6. Ghaddar, Bissan & Jabr, Rabih A., 2019. "Power transmission network expansion planning: A semidefinite programming branch-and-bound approach," European Journal of Operational Research, Elsevier, vol. 274(3), pages 837-844.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Xin & Chen, Haoyong & Liang, Zipeng & Zhu, Yanjin, 2023. "A Flexibility-oriented robust transmission expansion planning approach under high renewable energy resource penetration," Applied Energy, Elsevier, vol. 351(C).
    2. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    3. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    4. Khalid A. Alnowibet & Ahmad M. Alshamrani & Adel F. Alrasheedi, 2023. "A Bilevel Stochastic Optimization Framework for Market-Oriented Transmission Expansion Planning Considering Market Power," Energies, MDPI, vol. 16(7), pages 1-15, April.
    5. Grimm, Veronika & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2017. "Uniqueness of market equilibrium on a network: A peak-load pricing approach," European Journal of Operational Research, Elsevier, vol. 261(3), pages 971-983.
    6. Jinwoo Jeong & Heewon Shin & Hwachang Song & Byongjun Lee, 2018. "A Countermeasure for Preventing Flexibility Deficit under High-Level Penetration of Renewable Energies: A Robust Optimization Approach," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    7. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    8. Xuejun Zheng & Shaorong Wang & Zia Ullah & Mengmeng Xiao & Chang Ye & Zhangping Lei, 2021. "A Novel Optimization Method for a Multi-Year Planning Scheme of an Active Distribution Network in a Large Planning Zone," Energies, MDPI, vol. 14(12), pages 1-16, June.
    9. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    10. Yan, Chao & Geng, Xinbo & Bie, Zhaohong & Xie, Le, 2022. "Two-stage robust energy storage planning with probabilistic guarantees: A data-driven approach," Applied Energy, Elsevier, vol. 313(C).
    11. Chen, Cong & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "Two-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic model," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Fernández-Lobato, Lázuli & Jurado, Francisco, 2023. "Robust energy management in isolated microgrids with hydrogen storage and demand response," Applied Energy, Elsevier, vol. 345(C).
    13. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    14. Ding, Tao & Sun, Yuge & Huang, Can & Mu, Chenlu & Fan, Yuqi & Lin, Jiang & Qin, Yining, 2022. "Pathways of clean energy heating electrification programs for reducing carbon emissions in Northwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    15. Ambrosius, M. & Egerer, J. & Grimm, V. & Weijde, A.H. van der, 2020. "Uncertain bidding zone configurations: The role of expectations for transmission and generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 285(1), pages 343-359.
    16. Munoz, Francisco D. & van der Weijde, Adriaan Hendrik & Hobbs, Benjamin F. & Watson, Jean-Paul, 2017. "Does risk aversion affect transmission and generation planning? A Western North America case study," Energy Economics, Elsevier, vol. 64(C), pages 213-225.
    17. Zhang, Bingying & Li, Qiqiang & Wang, Luhao & Feng, Wei, 2018. "Robust optimization for energy transactions in multi-microgrids under uncertainty," Applied Energy, Elsevier, vol. 217(C), pages 346-360.
    18. Liu, Yuan & He, Li & Shen, Jing, 2017. "Optimization-based provincial hybrid renewable and non-renewable energy planning – A case study of Shanxi, China," Energy, Elsevier, vol. 128(C), pages 839-856.
    19. Sarid, Adi S. & Glynn, Peter W. & Tzur, Michal, 2024. "Power distribution in developing countries — Planning for effectiveness and equity," Omega, Elsevier, vol. 123(C).
    20. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Zhou, Yuekuan & Mansouri, Seyed Amir & Jurado, Francisco, 2024. "Best-case-aware planning of photovoltaic-battery systems for multi-mode charging stations," Renewable Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1602-:d:1618652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.