IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1099-d1027582.html
   My bibliography  Save this article

Stochastic Flexible Power System Expansion Planning, Based on the Demand Response Considering Consumption and Generation Uncertainties

Author

Listed:
  • Ali Toolabi Moghadam

    (School of Industrial and Information Engineering, Polytechnic University of Milan, 20133 Milan, Italy)

  • Bahram Bahramian

    (Department of Electrical Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran)

  • Farid Shahbaazy

    (Department of Electrical Engineering, Islamic Azad University, Borujerd Branch, Borujerd 691513-6111, Iran)

  • Ali Paeizi

    (Department of Electrical Engineering, Shahid Beheshti University, Tehran 198571-7443, Iran)

  • Tomonobu Senjyu

    (Faculty of Engineering, University of the Ryukyus, Okinawa 903-0213, Japan)

Abstract

This paper presents the generation and transmission expansion planning (GTEP) considering the switched capacitive banks (SCBs) allocation in the power system, including the demand response program (DRP). This scheme is based on the system flexibility. The objective function of the scheme minimizes the expected planning cost that is equaled to the summation of the total construction costs of the SCBs, the generation units (GUs) and the transmission lines (TLs), and the operating cost of the GUs. It is concerned with the AC power flow constraints, the planning-operation model of the mentioned elements, the DRP operation formulation, and the operating and flexibility limits of the network. In the following, the scenario-based stochastic programming is used to model the uncertainty parameters, such as the load and renewable power of wind farms. Then, the hybrid evolutionary algorithm, based on the combination of the crow search algorithm and the grey wolf optimizer, is used to determine the optimal point with the approximate unique solution. Finally, the scheme is applied on the transmission networks, the numerical results confirm the capabilities of the proposed scheme in simultaneously improving the flexibility, operation, and economic situation of the transmission network, so that the hybrid algorithm achieves the optimal solution in a shorter computation time, compared with the non-hybrid algorithms. This algorithm has a low standard deviation of about 92% in the final response. The proposed scheme with the optimal planning of the lines, sources, and capacitor banks, together with the optimal operation of the DRP succeeded in improving the energy loss and the voltage deviation by about 30–36% and 25–30%, compared with those of the power flow studies.

Suggested Citation

  • Ali Toolabi Moghadam & Bahram Bahramian & Farid Shahbaazy & Ali Paeizi & Tomonobu Senjyu, 2023. "Stochastic Flexible Power System Expansion Planning, Based on the Demand Response Considering Consumption and Generation Uncertainties," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1099-:d:1027582
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1099/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1099/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao, Yiyong & Zhang, Yue & Kaku, Ikou & Kang, Rui & Pan, Xing, 2021. "Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Norouzi, Mohammadali & Aghaei, Jamshid & Pirouzi, Sasan & Niknam, Taher & Fotuhi-Firuzabad, Mahmud & Shafie-khah, Miadreza, 2021. "Hybrid stochastic/robust flexible and reliable scheduling of secure networked microgrids with electric springs and electric vehicles," Applied Energy, Elsevier, vol. 300(C).
    3. Jin Wang & Yu Gao & Wei Liu & Arun Kumar Sangaiah & Hye-Jin Kim, 2019. "An intelligent data gathering schema with data fusion supported for mobile sink in wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 15(3), pages 15501477198, March.
    4. Long Liu & Zhichao Li & Xinyi Fu & Xuan Liu & Zehao Li & Wenfeng Zheng, 2022. "Impact of Power on Uneven Development: Evaluating Built-Up Area Changes in Chengdu Based on NPP-VIIRS Images (2015–2019)," Land, MDPI, vol. 11(4), pages 1-21, March.
    5. Wang, Dongxiao & Qiu, Jing & Reedman, Luke & Meng, Ke & Lai, Loi Lei, 2018. "Two-stage energy management for networked microgrids with high renewable penetration," Applied Energy, Elsevier, vol. 226(C), pages 39-48.
    6. Dini, Anoosh & Hassankashi, Alireza & Pirouzi, Sasan & Lehtonen, Matti & Arandian, Behdad & Baziar, Ali Asghar, 2022. "A flexible-reliable operation optimization model of the networked energy hubs with distributed generations, energy storage systems and demand response," Energy, Elsevier, vol. 239(PA).
    7. Aalami, H.A. & Moghaddam, M. Parsa & Yousefi, G.R., 2010. "Demand response modeling considering Interruptible/Curtailable loads and capacity market programs," Applied Energy, Elsevier, vol. 87(1), pages 243-250, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abolfazl Mehbodniya & Ali Paeizi & Mehrdad Rezaie & Mahdi Azimian & Hasan Masrur & Tomonobu Senjyu, 2022. "Active and Reactive Power Management in the Smart Distribution Network Enriched with Wind Turbines and Photovoltaic Systems," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    2. Sina Parhoudeh & Pablo Eguía López & Abdollah Kavousi Fard, 2023. "Stochastic Coordinated Management of Electrical–Gas–Thermal Networks in Flexible Energy Hubs Considering Day-Ahead Energy and Ancillary Markets," Sustainability, MDPI, vol. 15(13), pages 1-26, July.
    3. Zhang, XiaoWei & Yu, Xiaoping & Ye, Xinping & Pirouzi, Sasan, 2023. "Economic energy managementof networked flexi-renewable energy hubs according to uncertainty modeling by the unscented transformation method," Energy, Elsevier, vol. 278(PB).
    4. Yiqi Dong & Zuoji Dong, 2023. "Bibliometric Analysis of Game Theory on Energy and Natural Resource," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    5. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    6. Taimoor Ahmad Khan & Amjad Ullah & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Faheem Ali & Sajjad Ali & Sheraz Khan & Khalid Rehman, 2022. "A Fractional Order Super Twisting Sliding Mode Controller for Energy Management in Smart Microgrid Using Dynamic Pricing Approach," Energies, MDPI, vol. 15(23), pages 1-14, November.
    7. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    8. Eissa, M.M., 2018. "First time real time incentive demand response program in smart grid with “i-Energy” management system with different resources," Applied Energy, Elsevier, vol. 212(C), pages 607-621.
    9. Abdul Conteh & Mohammed Elsayed Lotfy & Kiptoo Mark Kipngetich & Tomonobu Senjyu & Paras Mandal & Shantanu Chakraborty, 2019. "An Economic Analysis of Demand Side Management Considering Interruptible Load and Renewable Energy Integration: A Case Study of Freetown Sierra Leone," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
    10. Ma, Cong & Cheok, Mui Yee & Chok, Nyen Vui, 2023. "Economic recovery through multisector management resources in small and medium businesses in China," Resources Policy, Elsevier, vol. 80(C).
    11. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    12. Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
    13. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).
    14. Li, Qiang & Gao, Mengkai & Lin, Houfei & Chen, Ziyu & Chen, Minyou, 2019. "MAS-based distributed control method for multi-microgrids with high-penetration renewable energy," Energy, Elsevier, vol. 171(C), pages 284-295.
    15. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    16. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    17. Ramin Nourollahi & Pouya Salyani & Kazem Zare & Behnam Mohammadi-Ivatloo & Zulkurnain Abdul-Malek, 2022. "Peak-Load Management of Distribution Network Using Conservation Voltage Reduction and Dynamic Thermal Rating," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    18. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2014. "Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response," Applied Energy, Elsevier, vol. 126(C), pages 297-306.
    19. Shafie-khah, M. & Kheradmand, M. & Javadi, S. & Azenha, M. & de Aguiar, J.L.B. & Castro-Gomes, J. & Siano, P. & Catalão, J.P.S., 2016. "Optimal behavior of responsive residential demand considering hybrid phase change materials," Applied Energy, Elsevier, vol. 163(C), pages 81-92.
    20. Dehnavi, Ehsan & Abdi, Hamdi, 2016. "Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem," Energy, Elsevier, vol. 109(C), pages 1086-1094.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1099-:d:1027582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.