IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2828-d232209.html
   My bibliography  Save this article

An Economic Analysis of Demand Side Management Considering Interruptible Load and Renewable Energy Integration: A Case Study of Freetown Sierra Leone

Author

Listed:
  • Abdul Conteh

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Okinawa 903-0213, Japan)

  • Mohammed Elsayed Lotfy

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Okinawa 903-0213, Japan
    Department of Electrical Power and Machines, Zagazig University, Zagazig 44519, Egypt)

  • Kiptoo Mark Kipngetich

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Okinawa 903-0213, Japan)

  • Tomonobu Senjyu

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Okinawa 903-0213, Japan)

  • Paras Mandal

    (Department of Electrical and Computer Engineering, University of Texas, El Paso, TX 78712, USA)

  • Shantanu Chakraborty

    (Energy Transition Hub, Australian-German Climate and Energy College, University of Melbourne, Melbourne 3010, Australia)

Abstract

Like in most developing countries, meeting the load demand and reduction in transmission grid bottlenecks remains a significant challenge for the power sector in Sierra Leone. In recent years, research attention has shifted to demand response (DR) programs geared towards improving the supply availability and quality of energy markets in developed countries. However, very few studies have discussed the implementation of suitable DR programs for developing countries, especially when utilizing renewable energy (RE) resources. In this paper, using the Freetown’s peak load demand data and the price elasticity concept, the interruptible demand response (DR) program has been considered for maximum demand index (MDI) customers. Economic analysis of the energy consumption, customer incentives, benefits, penalties and the impact on the load demand are analyzed, with optimally designed energy management for grid-integrated battery energy storage system (BESS) and photovoltaic (PV)-hybrid system using the genetic algorithm (GA). Five scenarios are considered to confirm the effectiveness and robustness of the proposed scheme. The results show the economic superiority of the proposed DR program’s approach for both customers and supplier benefits. Moreover, RE inclusion proved to be a practical approach over the project lifespan, compared to the diesel generation alternative.

Suggested Citation

  • Abdul Conteh & Mohammed Elsayed Lotfy & Kiptoo Mark Kipngetich & Tomonobu Senjyu & Paras Mandal & Shantanu Chakraborty, 2019. "An Economic Analysis of Demand Side Management Considering Interruptible Load and Renewable Energy Integration: A Case Study of Freetown Sierra Leone," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2828-:d:232209
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2828/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Behrangrad, Mahdi, 2015. "A review of demand side management business models in the electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 270-283.
    2. Jonathan T. Lee & Duncan S. Callaway, 2018. "The cost of reliability in decentralized solar power systems in sub-Saharan Africa," Nature Energy, Nature, vol. 3(11), pages 960-968, November.
    3. David Abdul Konneh & Harun Or Rashid Howlader & Ryuto Shigenobu & Tomonobu Senjyu & Shantanu Chakraborty & Narayanan Krishna, 2019. "A Multi-Criteria Decision Maker for Grid-Connected Hybrid Renewable Energy Systems Selection Using Multi-Objective Particle Swarm Optimization," Sustainability, MDPI, vol. 11(4), pages 1-36, February.
    4. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    5. Solano-Peralta, Mauricio & Moner-Girona, Magda & van Sark, Wilfried G.J.H.M. & Vallvè, Xavier, 2009. ""Tropicalisation" of Feed-in Tariffs: A custom-made support scheme for hybrid PV/diesel systems in isolated regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2279-2294, December.
    6. Torriti, Jacopo & Hassan, Mohamed G. & Leach, Matthew, 2010. "Demand response experience in Europe: Policies, programmes and implementation," Energy, Elsevier, vol. 35(4), pages 1575-1583.
    7. Adewuyi, Oludamilare Bode & Lotfy, Mohammed E. & Akinloye, Benjamin Olabisi & Rashid Howlader, Harun Or & Senjyu, Tomonobu & Narayanan, Krishna, 2019. "Security-constrained optimal utility-scale solar PV investment planning for weak grids: Short reviews and techno-economic analysis," Applied Energy, Elsevier, vol. 245(C), pages 16-30.
    8. Ming, Zeng & Song, Xue & Mingjuan, Ma & Lingyun, Li & Min, Cheng & Yuejin, Wang, 2013. "Historical review of demand side management in China: Management content, operation mode, results assessment and relative incentives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 470-482.
    9. Aalami, H.A. & Moghaddam, M. Parsa & Yousefi, G.R., 2010. "Demand response modeling considering Interruptible/Curtailable loads and capacity market programs," Applied Energy, Elsevier, vol. 87(1), pages 243-250, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehrjerdi, Hasan & Hemmati, Reza, 2020. "Energy and uncertainty management through domestic demand response in the residential building," Energy, Elsevier, vol. 192(C).
    2. Konneh, Keifa Vamba & Masrur, Hasan & Konneh, David A. & Senjyu, Tomonobu, 2022. "Independent or complementary power system configuration: A decision making approach for sustainable electrification of an urban environment in Sierra Leone," Energy, Elsevier, vol. 239(PD).
    3. Abdul Conteh & Mohammed Elsayed Lotfy & Oludamilare Bode Adewuyi & Paras Mandal & Hiroshi Takahashi & Tomonobu Senjyu, 2020. "Demand Response Economic Assessment with the Integration of Renewable Energy for Developing Electricity Markets," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    4. Hirmer, S.A. & George-Williams, H. & Rhys, J. & McNicholl, D. & McCulloch, M., 2021. "Stakeholder decision-making: Understanding Sierra Leone's energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Máximo A. Domínguez-Garabitos & Víctor S. Ocaña-Guevara & Félix Santos-García & Adriana Arango-Manrique & Miguel Aybar-Mejía, 2022. "A Methodological Proposal for Implementing Demand-Shifting Strategies in the Wholesale Electricity Market," Energies, MDPI, vol. 15(4), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    2. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    3. Tahir, Muhammad Faizan & Chen, Haoyong & Khan, Asad & Javed, Muhammad Sufyan & Cheema, Khalid Mehmood & Laraik, Noman Ali, 2020. "Significance of demand response in light of current pilot projects in China and devising a problem solution for future advancements," Technology in Society, Elsevier, vol. 63(C).
    4. Hussein Jumma Jabir & Jiashen Teh & Dahaman Ishak & Hamza Abunima, 2018. "Impacts of Demand-Side Management on Electrical Power Systems: A Review," Energies, MDPI, vol. 11(5), pages 1-19, April.
    5. Rajavelu Dharani & Madasamy Balasubramonian & Thanikanti Sudhakar Babu & Benedetto Nastasi, 2021. "Load Shifting and Peak Clipping for Reducing Energy Consumption in an Indian University Campus," Energies, MDPI, vol. 14(3), pages 1-16, January.
    6. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Alasseri, Rajeev & Rao, T. Joji & Sreekanth, K.J., 2020. "Institution of incentive-based demand response programs and prospective policy assessments for a subsidized electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    8. Hui, Hongxun & Ding, Yi & Shi, Qingxin & Li, Fangxing & Song, Yonghua & Yan, Jinyue, 2020. "5G network-based Internet of Things for demand response in smart grid: A survey on application potential," Applied Energy, Elsevier, vol. 257(C).
    9. Abdul Conteh & Mohammed Elsayed Lotfy & Oludamilare Bode Adewuyi & Paras Mandal & Hiroshi Takahashi & Tomonobu Senjyu, 2020. "Demand Response Economic Assessment with the Integration of Renewable Energy for Developing Electricity Markets," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    10. Li, Bosong & Shen, Jingshuang & Wang, Xu & Jiang, Chuanwen, 2016. "From controllable loads to generalized demand-side resources: A review on developments of demand-side resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 936-944.
    11. Xiao, Jingjie, 2013. "Grid integration and smart grid implementation of emerging technologies in electric power systems through approximate dynamic programming," MPRA Paper 58696, University Library of Munich, Germany.
    12. Nikzad, Mehdi & Mozafari, Babak & Bashirvand, Mahdi & Solaymani, Soodabeh & Ranjbar, Ali Mohamad, 2012. "Designing time-of-use program based on stochastic security constrained unit commitment considering reliability index," Energy, Elsevier, vol. 41(1), pages 541-548.
    13. Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
    14. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    15. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    16. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    17. Faria, P. & Vale, Z., 2011. "Demand response in electrical energy supply: An optimal real time pricing approach," Energy, Elsevier, vol. 36(8), pages 5374-5384.
    18. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.
    19. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    20. Yang, Changhui & Meng, Chen & Zhou, Kaile, 2018. "Residential electricity pricing in China: The context of price-based demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2870-2878.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2828-:d:232209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.