IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1509-d1615212.html
   My bibliography  Save this article

Optimization of Energy Recovery Processes from Sunflower Stalks Using Expired Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)

Author

Listed:
  • Valentina Zubkova

    (Institute of Chemistry, Faculty of Sciences and Natural Sciences, Jan Kochanowski University in Kielce, Uniwersytecka Str. 7, 25-406 Kielce, Poland)

  • Andrzej Strojwas

    (Institute of Chemistry, Faculty of Sciences and Natural Sciences, Jan Kochanowski University in Kielce, Uniwersytecka Str. 7, 25-406 Kielce, Poland)

  • Stanislaw Baran

    (M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza Str. 11, 30-348 Krakow, Poland)

Abstract

The influence of the addition of expired paracetamol, naproxen, ibuprofen, and their blend on the course of pyrolysis of sunflower stalks was studied using the gravimetric technique as well as the techniques of IR and UV, XRD, and SEM and EDX spectroscopies. It was ascertained that ibuprofen has the highest effect in reduction of hydrocarbons in the composition of volatile pyrolysis products, which lowers the contribution of bands: saturated and unsaturated hydrocarbons by about 2.36 times; compounds with carbonyl groups by almost by three times; and the contribution of alcohols, phenols, and esters by 2.5 times in the FT-IR spectra. The reasons for a greater effectiveness of ibuprofen in reducing hydrocarbons in volatiles can be its lower temperature of decomposition and distinct composition of formed volatile pyrolysis products. Up to the temperature of 450 °C, paracetamol inhibits the migration of AAEMs from the pyrolyzed sample, the blend of pharmaceuticals accelerates the migration of all AAEMs except inorganics with Mg atoms. In the sediment of char of ibuprofen additive, there is a higher amount of Ca, Mg, and Cl atoms than in other chars, which can explain a greater influence of ibuprofen on the reduction of hydrocarbons in the composition of volatiles.

Suggested Citation

  • Valentina Zubkova & Andrzej Strojwas & Stanislaw Baran, 2025. "Optimization of Energy Recovery Processes from Sunflower Stalks Using Expired Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)," Energies, MDPI, vol. 18(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1509-:d:1615212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1509/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1509/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Zhen & Liu, Jing & Shen, Fenghua & Wang, Zhen, 2020. "Temporal release behavior of potassium during pyrolysis and gasification of sawdust particles," Renewable Energy, Elsevier, vol. 156(C), pages 98-106.
    2. Meng, Fanbin & Wang, Donghai, 2020. "Effects of vacuum freeze drying pretreatment on biomass and biochar properties," Renewable Energy, Elsevier, vol. 155(C), pages 1-9.
    3. Nocquet, Timothée & Dupont, Capucine & Commandre, Jean-Michel & Grateau, Maguelone & Thiery, Sébastien & Salvador, Sylvain, 2014. "Volatile species release during torrefaction of wood and its macromolecular constituents: Part 1 – Experimental study," Energy, Elsevier, vol. 72(C), pages 180-187.
    4. Li, Chao & Zhang, Chenting & Sun, Kai & Zhang, Zhanming & Zhang, Lijun & Zhang, Shu & Liu, Qing & Hu, Guangzhi & Wang, Shuang & Hu, Xun, 2020. "Pyrolysis of saw dust with co-feeding of methanol," Renewable Energy, Elsevier, vol. 160(C), pages 1023-1035.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Lingeng & Liu, Ye & Yu, Jianlin, 2023. "Energy, exergy and economic evaluation of a solar enhanced ejector expansion heat pump cycle," Renewable Energy, Elsevier, vol. 217(C).
    2. Kuznetsov, G.V. & Syrodoy, S.V. & Nigay, N.A. & Maksimov, V.I. & Gutareva, N.Yu., 2021. "Features of the processes of heat and mass transfer when drying a large thickness layer of wood biomass," Renewable Energy, Elsevier, vol. 169(C), pages 498-511.
    3. Moya, Roger & Rodríguez-Zúñiga, Ana & Puente-Urbina, Allen & Gaitán-Álvarez, Johanna, 2018. "Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analysis in five fast-growing plantations of Costa Rica," Energy, Elsevier, vol. 149(C), pages 1-10.
    4. Bouraoui, Zeineb & Jeguirim, Mejdi & Guizani, Chamseddine & Limousy, Lionel & Dupont, Capucine & Gadiou, Roger, 2015. "Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity," Energy, Elsevier, vol. 88(C), pages 703-710.
    5. Guizani, Chamseddine & Haddad, Khouloud & Jeguirim, Mejdi & Colin, Baptiste & Limousy, Lionel, 2016. "Combustion characteristics and kinetics of torrefied olive pomace," Energy, Elsevier, vol. 107(C), pages 453-463.
    6. González Martínez, María & Dupont, Capucine & da Silva Perez, Denilson & Mortha, Gérard & Thiéry, Sébastien & Meyer, Xuân-mi & Gourdon, Christophe, 2020. "Understanding the torrefaction of woody and agricultural biomasses through their extracted macromolecular components. Part 1: Experimental thermogravimetric solid mass loss," Energy, Elsevier, vol. 205(C).
    7. Sun, Yifan & Li, Chao & Zhang, Shu & Li, Qiaoling & Gholizadeh, Mortaza & Wang, Yi & Hu, Song & Xiang, Jun & Hu, Xun, 2021. "Pyrolysis of soybean residue: Understanding characteristics of the products," Renewable Energy, Elsevier, vol. 174(C), pages 487-500.
    8. Dossow, Marcel & Dieterich, Vincent & Hanel, Andreas & Spliethoff, Hartmut & Fendt, Sebastian, 2021. "Improving carbon efficiency for an advanced Biomass-to-Liquid process using hydrogen and oxygen from electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Li, Qingyin & Lin, Haisheng & Fan, Huailin & Zhang, Shu & Yuan, Xiangzhou & Wang, Yi & Xiang, Jun & Hu, Song & Bkangmo Kontchouo, Félix Mérimé & Hu, Xun, 2021. "Co-pyrolysis of swine manure and pinewood sawdust: Evidence of cross-interaction of the volatiles and profound impacts on product characteristics," Renewable Energy, Elsevier, vol. 179(C), pages 1370-1384.
    10. Doddapaneni, Tharaka Rama Krishna C. & Praveenkumar, Ramasamy & Tolvanen, Henrik & Rintala, Jukka & Konttinen, Jukka, 2018. "Techno-economic evaluation of integrating torrefaction with anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 272-284.
    11. Tsai, Wen-Tien & Lin, Yu-Quan & Tsai, Chi-Hung & Chung, Mei-Hua & Chu, Ming-Hung & Huang, Hung-Ju & Jao, Ya-Hsuan & Yeh, Showin-Ing, 2020. "Conversion of water caltrop husk into torrefied biomass by torrefaction," Energy, Elsevier, vol. 195(C).
    12. Leontiev, Alexandr & Kichatov, Boris & Korshunov, Alexey & Kiverin, Alexey & Medvetskaya, Natalia & Melnikova, Ksenia, 2018. "Oxidative torrefaction of briquetted birch shavings in the bentonite," Energy, Elsevier, vol. 165(PA), pages 303-313.
    13. Granados, D.A. & Ruiz, R.A. & Vega, L.Y. & Chejne, F., 2017. "Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process," Energy, Elsevier, vol. 139(C), pages 818-827.
    14. Suchandra Hazra & Prithvi Morampudi & John C. Prindle & Dhan Lord B. Fortela & Rafael Hernandez & Mark E. Zappi & Prashanth Buchireddy, 2023. "Torrefaction of Pine Using a Pilot-Scale Rotary Reactor: Experimentation, Kinetics, and Process Simulation Using Aspen Plus™," Clean Technol., MDPI, vol. 5(2), pages 1-21, May.
    15. González Martínez, María & Dupont, Capucine & Anca-Couce, Andrés & da Silva Perez, Denilson & Boissonnet, Guillaume & Thiéry, Sébastien & Meyer, Xuân-mi & Gourdon, Christophe, 2020. "Understanding the torrefaction of woody and agricultural biomasses through their extracted macromolecular components. Part 2: Torrefaction model," Energy, Elsevier, vol. 210(C).
    16. Rodriguez Alonso, Elvira & Dupont, Capucine & Heux, Laurent & Da Silva Perez, Denilson & Commandre, Jean-Michel & Gourdon, Christophe, 2016. "Study of solid chemical evolution in torrefaction of different biomasses through solid-state 13C cross-polarization/magic angle spinning NMR (nuclear magnetic resonance) and TGA (thermogravimetric ana," Energy, Elsevier, vol. 97(C), pages 381-390.
    17. Fanbin Meng & Donghai Wang, 2025. "New Strategies for Sustainable Biofuel Production: Pyrolytic Poly-Generation of Biomass," Sustainability, MDPI, vol. 17(5), pages 1-19, February.
    18. Krochmalny, Krystian & Niedzwiecki, Lukasz & Pelińska-Olko, Ewa & Wnukowski, Mateusz & Czajka, Krzysztof & Tkaczuk-Serafin, Monika & Pawlak-Kruczek, Halina, 2020. "Determination of the marker for automation of torrefaction and slow pyrolysis processes – A case study of spherical wood particles," Renewable Energy, Elsevier, vol. 161(C), pages 350-360.
    19. Arteaga-Pérez, Luis E. & Segura, Cristina & Bustamante-García, Verónica & Gómez Cápiro, Oscar & Jiménez, Romel, 2015. "Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: Focus on volatile evolution vs feasible temperatures," Energy, Elsevier, vol. 93(P2), pages 1731-1741.
    20. Jerzak, Wojciech & Kuźnia, Monika, 2021. "Examination of inorganic gaseous species and condensed phases during coconut husk combustion based on thermodynamic equilibrium predictions," Renewable Energy, Elsevier, vol. 167(C), pages 497-507.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1509-:d:1615212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.