IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics036054422500564x.html
   My bibliography  Save this article

Enhancement of the co-gasification reactivity of biomass and coal with the introduction of calcium-based additives

Author

Listed:
  • Ding, Liang
  • Li, Zhuoyuan
  • Li, Xiaohui
  • Bai, Ting
  • Qiu, Zegang
  • Wang, Zhiqing
  • Fang, Yitian

Abstract

The alkali metals in biomass are the fundamental basis for the synergistic effect observed during co-gasification. However, coal minerals can deactivate these alkali metals by forming non-catalytic compounds, thus inhibiting their catalytic effect. The co-gasification of wheat straw and Jincheng anthracite coal was investigated in a fixed-bed reactor at 900–1000 °C under steam atmosphere. Results indicated the presence of a synergistic effect with an undesirable potassium deactivation. Calcium-based additives were introduced to mitigate the deactivation phenomenon. The effects of additive species, quantities and loading methods on co-gasification reactivity were explored. The introduction of calcium-based additives resulted in a higher content of water-soluble K, an increase in surface area and a more robust amorphous structure in the co-pyrolysis char. The optimal addition of 5 wt% Ca(Ac)2 almost doubled the gasification rate and decreased the activation energy of the co-pyrolysis char from 143.42 kJ/mol to 110.67 kJ/mol. Besides, the S-MRPM (shifted modified random pore model) can effectively predict the gasification of wheat straw char and co-pyrolysis char, while the RPM (random pore mode) described well the gasification of Jincheng anthracite coal char and the co-pyrolysis char with Ca(Ac)2.

Suggested Citation

  • Ding, Liang & Li, Zhuoyuan & Li, Xiaohui & Bai, Ting & Qiu, Zegang & Wang, Zhiqing & Fang, Yitian, 2025. "Enhancement of the co-gasification reactivity of biomass and coal with the introduction of calcium-based additives," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s036054422500564x
    DOI: 10.1016/j.energy.2025.134922
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422500564X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134922?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Diao, Rui & Li, Shanshan & Deng, Jingjing & Zhu, Xifeng, 2021. "Interaction and kinetic analysis of co-gasification of bituminous coal with walnut shell under CO2 atmosphere: Effect of inorganics and carbon structures," Renewable Energy, Elsevier, vol. 173(C), pages 177-187.
    2. Sikarwar, Vineet Singh & Mašláni, Alan & Van Oost, Guido & Fathi, Jafar & Hlína, Michal & Mates, Tomáš & Pohořelý, Michael & Jeremiáš, Michal, 2024. "Integration of thermal plasma with CCUS to valorize sewage sludge," Energy, Elsevier, vol. 288(C).
    3. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko, 2015. "From fossil fuels towards renewables: Inhibitory and catalytic effects on carbon thermochemical conversion during co-gasification of biomass with fossil fuels," Applied Energy, Elsevier, vol. 140(C), pages 196-209.
    4. Zhang, Zhen & Liu, Jing & Shen, Fenghua & Wang, Zhen, 2020. "Temporal release behavior of potassium during pyrolysis and gasification of sawdust particles," Renewable Energy, Elsevier, vol. 156(C), pages 98-106.
    5. Wang, Guangwei & Zhang, Jianliang & Shao, Jiugang & Liu, Zhengjian & Wang, Haiyang & Li, Xinyu & Zhang, Pengcheng & Geng, Weiwei & Zhang, Guohua, 2016. "Experimental and modeling studies on CO2 gasification of biomass chars," Energy, Elsevier, vol. 114(C), pages 143-154.
    6. Shengguo Zhao & Liang Ding & Yun Ruan & Bin Bai & Zegang Qiu & Zhiqin Li, 2021. "Experimental and Kinetic Studies on Steam Gasification of a Biomass Char," Energies, MDPI, vol. 14(21), pages 1-23, November.
    7. Guo, Jianxin & Zhu, Kaiwei & Cheng, Yonglong, 2024. "Deployment of clean energy technologies towards carbon neutrality under resource constraints," Energy, Elsevier, vol. 295(C).
    8. Safarian, Sahar & Unnþórsson, Rúnar & Richter, Christiaan, 2019. "A review of biomass gasification modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 378-391.
    9. Wang, Guangwei & Zhang, Jianliang & Zhang, Guohua & Ning, Xiaojun & Li, Xinyu & Liu, Zhengjian & Guo, Jian, 2017. "Experimental and kinetic studies on co-gasification of petroleum coke and biomass char blends," Energy, Elsevier, vol. 131(C), pages 27-40.
    10. Kirtania, Kawnish & Axelsson, Joel & Matsakas, Leonidas & Christakopoulos, Paul & Umeki, Kentaro & Furusjö, Erik, 2017. "Kinetic study of catalytic gasification of wood char impregnated with different alkali salts," Energy, Elsevier, vol. 118(C), pages 1055-1065.
    11. Dongdong Feng & Yijun Zhao & Yu Zhang & Shaozeng Sun & Jianmin Gao, 2018. "Steam Gasification of Sawdust Biochar Influenced by Chemical Speciation of Alkali and Alkaline Earth Metallic Species," Energies, MDPI, vol. 11(1), pages 1-16, January.
    12. Wei, Juntao & Gong, Yan & Guo, Qinghua & Chen, Xueli & Ding, Lu & Yu, Guangsuo, 2019. "A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals," Renewable Energy, Elsevier, vol. 131(C), pages 597-605.
    13. Yu, Junqin & Xia, Weidong & Areeprasert, Chinnathan & Ding, Lu & Umeki, Kentaro & Yu, Guangsuo, 2022. "Catalytic effects of inherent AAEM on char gasification: A mechanism study using in-situ Raman," Energy, Elsevier, vol. 238(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengguo Zhao & Liang Ding & Yun Ruan & Bin Bai & Zegang Qiu & Zhiqin Li, 2021. "Experimental and Kinetic Studies on Steam Gasification of a Biomass Char," Energies, MDPI, vol. 14(21), pages 1-23, November.
    2. Liang, Wang & Ning, Xiaojun & Wang, Guangwei & Zhang, Jianliang & Li, Rongpeng & Chang, Weiwei & Wang, Chuan, 2021. "Influence mechanism and kinetic analysis of co-gasification of biomass char and semi-coke," Renewable Energy, Elsevier, vol. 163(C), pages 331-341.
    3. Hu, Qiang & Yang, Haiping & Wu, Zhiqiang & Lim, C. Jim & Bi, Xiaotao T. & Chen, Hanping, 2019. "Experimental and modeling study of potassium catalyzed gasification of woody char pellet with CO2," Energy, Elsevier, vol. 171(C), pages 678-688.
    4. Dang, Han & Xu, Runsheng & Zhang, Jianliang & Wang, Mingyong & Zhang, Jinyin, 2025. "Interaction mechanism and kinetic modeling of anthracite and power plant biomass waste during CO2 co-gasification process," Energy, Elsevier, vol. 325(C).
    5. Wei, Juntao & Guo, Qinghua & Gong, Yan & Ding, Lu & Yu, Guangsuo, 2020. "Effect of biomass leachates on structure evolution and reactivity characteristic of petroleum coke gasification," Renewable Energy, Elsevier, vol. 155(C), pages 111-120.
    6. Dahou, T. & Defoort, F. & Khiari, B. & Labaki, M. & Dupont, C. & Jeguirim, M., 2021. "Role of inorganics on the biomass char gasification reactivity: A review involving reaction mechanisms and kinetics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Diao, Rui & Li, Shanshan & Deng, Jingjing & Zhu, Xifeng, 2021. "Interaction and kinetic analysis of co-gasification of bituminous coal with walnut shell under CO2 atmosphere: Effect of inorganics and carbon structures," Renewable Energy, Elsevier, vol. 173(C), pages 177-187.
    8. He, Qing & Yu, Junqin & Song, Xudong & Ding, Lu & Wei, Juntao & Yu, Guangsuo, 2020. "Utilization of biomass ash for upgrading petroleum coke gasification: Effect of soluble and insoluble components," Energy, Elsevier, vol. 192(C).
    9. Zhang, Qian & Li, Qingfeng & Zhang, Linxian & Yu, Zhongliang & Jing, Xuliang & Wang, Zhiqing & Fang, Yitian & Huang, Wei, 2017. "Experimental study on co-pyrolysis and gasification of biomass with deoiled asphalt," Energy, Elsevier, vol. 134(C), pages 301-310.
    10. Tahereh Jalalabadi & Behdad Moghtaderi & Jessica Allen, 2020. "Thermochemical Conversion of Biomass in the Presence of Molten Alkali-Metal Carbonates under Reducing Environments of N 2 and CO 2," Energies, MDPI, vol. 13(20), pages 1-14, October.
    11. Despina Vamvuka & George Tsagris & Christia Loulashi, 2023. "Co-Gasification Performance of Low-Quality Lignite with Woody Wastes Using Greenhouse Gas CO 2 —A TG–MS Study," Sustainability, MDPI, vol. 15(12), pages 1-12, June.
    12. Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.
    13. Wei, Juntao & Guo, Qinghua & Ding, Lu & Yoshikawa, Kunio & Yu, Guangsuo, 2017. "Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification," Applied Energy, Elsevier, vol. 206(C), pages 1354-1363.
    14. Kou, Mingyin & Zuo, Haibin & Ning, Xiaojun & Wang, Guangwei & Hong, Zhibin & Xu, Haifa & Wu, Shengli, 2019. "Thermogravimetric study on gasification kinetics of hydropyrolysis char derived from low rank coal," Energy, Elsevier, vol. 188(C).
    15. Diba, Mst Farhana & Karim, Md Rezwanul & Naser, Jamal, 2022. "CFD modelling of coal gasification in a fluidized bed with the effects of calcination under different operating conditions," Energy, Elsevier, vol. 239(PC).
    16. Bhattarai, Ashish & Kafle, Sagar & Sakhakarmy, Manish & Moogi, Surendar & Adhikari, Sushil, 2024. "Fluidized-bed gasification kinetics model development using genetic algorithm for biomass, coal, municipal plastic waste, and their blends," Energy, Elsevier, vol. 313(C).
    17. Al-Muraisy, Saqr A.A. & Chuayboon, Srirat & Soares, Lais Americo & Buijnsters, J.G. & Ismail, Shahrul bin & Abanades, Stéphane & van Lier, Jules B. & Lindeboom, Ralph E.F., 2025. "Carbon capture through solar-driven CO2 gasification of oil palm empty fruit bunch to produce syngas and biochar," Energy, Elsevier, vol. 323(C).
    18. Li, Shenghui & Sun, Xiaojing & Liu, Linlin & Du, Jian, 2023. "A full process optimization of methanol production integrated with co-generation based on the co-gasification of biomass and coal," Energy, Elsevier, vol. 267(C).
    19. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    20. Qianshi, Song & Wei, Zhang & Xiaowei, Wang & Xiaohan, Wang & Haowen, Li & Zixin, Yang & Yue, Ye & Guangqian, Luo, 2023. "Comprehensive effects of different inorganic elements on initial biomass char-CO2 gasification reactivity in micro fluidised bed reactor: Theoretical modeling and experiment analysis," Energy, Elsevier, vol. 262(PA).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s036054422500564x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.